ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.00469
  4. Cited By
Never Go Full Batch (in Stochastic Convex Optimization)

Never Go Full Batch (in Stochastic Convex Optimization)

29 June 2021
I Zaghloul Amir
Y. Carmon
Tomer Koren
Roi Livni
ArXivPDFHTML

Papers citing "Never Go Full Batch (in Stochastic Convex Optimization)"

13 / 13 papers shown
Title
The Sample Complexity of Gradient Descent in Stochastic Convex
  Optimization
The Sample Complexity of Gradient Descent in Stochastic Convex Optimization
Roi Livni
MLT
39
1
0
07 Apr 2024
Information Complexity of Stochastic Convex Optimization: Applications
  to Generalization and Memorization
Information Complexity of Stochastic Convex Optimization: Applications to Generalization and Memorization
Idan Attias
Gintare Karolina Dziugaite
Mahdi Haghifam
Roi Livni
Daniel M. Roy
30
6
0
14 Feb 2024
The Sample Complexity Of ERMs In Stochastic Convex Optimization
The Sample Complexity Of ERMs In Stochastic Convex Optimization
Dan Carmon
Roi Livni
Amir Yehudayoff
21
3
0
09 Nov 2023
Stability and Generalization for Minibatch SGD and Local SGD
Stability and Generalization for Minibatch SGD and Local SGD
Yunwen Lei
Tao Sun
Mingrui Liu
38
3
0
02 Oct 2023
Select without Fear: Almost All Mini-Batch Schedules Generalize
  Optimally
Select without Fear: Almost All Mini-Batch Schedules Generalize Optimally
Konstantinos E. Nikolakakis
Amin Karbasi
Dionysis Kalogerias
37
5
0
03 May 2023
Information Theoretic Lower Bounds for Information Theoretic Upper
  Bounds
Information Theoretic Lower Bounds for Information Theoretic Upper Bounds
Roi Livni
24
14
0
09 Feb 2023
Differentially Private Generalized Linear Models Revisited
Differentially Private Generalized Linear Models Revisited
R. Arora
Raef Bassily
Cristóbal Guzmán
Michael Menart
Enayat Ullah
FedML
28
16
0
06 May 2022
Beyond Lipschitz: Sharp Generalization and Excess Risk Bounds for
  Full-Batch GD
Beyond Lipschitz: Sharp Generalization and Excess Risk Bounds for Full-Batch GD
Konstantinos E. Nikolakakis
Farzin Haddadpour
Amin Karbasi
Dionysios S. Kalogerias
43
17
0
26 Apr 2022
Making Progress Based on False Discoveries
Making Progress Based on False Discoveries
Roi Livni
38
0
0
19 Apr 2022
Thinking Outside the Ball: Optimal Learning with Gradient Descent for
  Generalized Linear Stochastic Convex Optimization
Thinking Outside the Ball: Optimal Learning with Gradient Descent for Generalized Linear Stochastic Convex Optimization
I Zaghloul Amir
Roi Livni
Nathan Srebro
32
6
0
27 Feb 2022
Black-Box Generalization: Stability of Zeroth-Order Learning
Black-Box Generalization: Stability of Zeroth-Order Learning
Konstantinos E. Nikolakakis
Farzin Haddadpour
Dionysios S. Kalogerias
Amin Karbasi
MLT
24
2
0
14 Feb 2022
Stochastic Training is Not Necessary for Generalization
Stochastic Training is Not Necessary for Generalization
Jonas Geiping
Micah Goldblum
Phillip E. Pope
Michael Moeller
Tom Goldstein
89
72
0
29 Sep 2021
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
310
2,892
0
15 Sep 2016
1