ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.16188
  4. Cited By
Improving Factual Consistency of Abstractive Summarization on Customer
  Feedback

Improving Factual Consistency of Abstractive Summarization on Customer Feedback

30 June 2021
Yang Liu
Yifei Sun
Vincent Gao
    HILM
ArXivPDFHTML

Papers citing "Improving Factual Consistency of Abstractive Summarization on Customer Feedback"

5 / 5 papers shown
Title
Faithfulness in Natural Language Generation: A Systematic Survey of
  Analysis, Evaluation and Optimization Methods
Faithfulness in Natural Language Generation: A Systematic Survey of Analysis, Evaluation and Optimization Methods
Wei Li
Wenhao Wu
Moye Chen
Jiachen Liu
Xinyan Xiao
Hua Wu
HILM
23
27
0
10 Mar 2022
CaPE: Contrastive Parameter Ensembling for Reducing Hallucination in
  Abstractive Summarization
CaPE: Contrastive Parameter Ensembling for Reducing Hallucination in Abstractive Summarization
Prafulla Kumar Choubey
Alexander R. Fabbri
Jesse Vig
Chien-Sheng Wu
Wenhao Liu
Nazneen Rajani
HILM
24
16
0
14 Oct 2021
Constrained Abstractive Summarization: Preserving Factual Consistency
  with Constrained Generation
Constrained Abstractive Summarization: Preserving Factual Consistency with Constrained Generation
Yuning Mao
Xiang Ren
Heng Ji
Jiawei Han
HILM
123
38
0
24 Oct 2020
Factual Error Correction for Abstractive Summarization Models
Factual Error Correction for Abstractive Summarization Models
Mengyao Cao
Yue Dong
Jiapeng Wu
Jackie C.K. Cheung
HILM
KELM
169
159
0
17 Oct 2020
Text Summarization Techniques: A Brief Survey
Text Summarization Techniques: A Brief Survey
M. Allahyari
Seyedamin Pouriyeh
Mehdi Assefi
S. Safaei
Elizabeth D. Trippe
Juan B. Gutierrez
K. Kochut
CVBM
60
513
0
07 Jul 2017
1