Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.15853
Cited By
v1
v2 (latest)
Understanding and Improving Early Stopping for Learning with Noisy Labels
30 June 2021
Ying-Long Bai
Erkun Yang
Bo Han
Yanhua Yang
Jiatong Li
Yinian Mao
Gang Niu
Tongliang Liu
NoLa
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Understanding and Improving Early Stopping for Learning with Noisy Labels"
35 / 35 papers shown
Title
Humble your Overconfident Networks: Unlearning Overfitting via Sequential Monte Carlo Tempered Deep Ensembles
Andrew Millard
Zheng Zhao
Joshua Murphy
Simon Maskell
UQCV
BDL
118
0
0
16 May 2025
Enhanced Sample Selection with Confidence Tracking: Identifying Correctly Labeled yet Hard-to-Learn Samples in Noisy Data
Weiran Pan
Wei Wei
Feida Zhu
Yong Deng
NoLa
562
0
0
24 Apr 2025
Sample Selection via Contrastive Fragmentation for Noisy Label Regression
C. Kim
Sangwoo Moon
Jihwan Moon
Dongyeon Woo
Gunhee Kim
NoLa
172
0
0
25 Feb 2025
Early Stopping Against Label Noise Without Validation Data
Suqin Yuan
Lei Feng
Tongliang Liu
NoLa
259
19
0
11 Feb 2025
Enhancing Sample Utilization in Noise-Robust Deep Metric Learning With Subgroup-Based Positive-Pair Selection
Zhipeng Yu
Qianqian Xu
Yangbangyan Jiang
Yingfei Sun
Qingming Huang
NoLa
123
0
0
19 Jan 2025
Imbalanced Medical Image Segmentation with Pixel-dependent Noisy Labels
Erjian Guo
Zicheng Wang
Zhen Zhao
Luping Zhou
NoLa
164
0
0
12 Jan 2025
Source-free Semantic Regularization Learning for Semi-supervised Domain Adaptation
Xinyang Huang
Chuang Zhu
Ruiying Ren
Shengjie Liu
Tiejun Huang
183
0
0
03 Jan 2025
PGD-Imp: Rethinking and Unleashing Potential of Classic PGD with Dual Strategies for Imperceptible Adversarial Attacks
Jin Li
Zitong Yu
Ziqiang He
Zhong Wang
Xiangui Kang
AAML
141
0
0
15 Dec 2024
Early-Learning Regularization Prevents Memorization of Noisy Labels
Sheng Liu
Jonathan Niles-Weed
N. Razavian
C. Fernandez‐Granda
NoLa
104
568
0
30 Jun 2020
Normalized Loss Functions for Deep Learning with Noisy Labels
Xingjun Ma
Hanxun Huang
Yisen Wang
Simone Romano
S. Erfani
James Bailey
NoLa
73
445
0
24 Jun 2020
Part-dependent Label Noise: Towards Instance-dependent Label Noise
Xiaobo Xia
Tongliang Liu
Bo Han
Nannan Wang
Biwei Huang
Haifeng Liu
Gang Niu
Dacheng Tao
Masashi Sugiyama
NoLa
59
67
0
14 Jun 2020
Class2Simi: A Noise Reduction Perspective on Learning with Noisy Labels
Songhua Wu
Xiaobo Xia
Tongliang Liu
Bo Han
Biwei Huang
Nannan Wang
Haifeng Liu
Gang Niu
NoLa
57
53
0
14 Jun 2020
Do We Need Zero Training Loss After Achieving Zero Training Error?
Takashi Ishida
Ikko Yamane
Tomoya Sakai
Gang Niu
Masashi Sugiyama
AI4CE
63
137
0
20 Feb 2020
DivideMix: Learning with Noisy Labels as Semi-supervised Learning
Junnan Li
R. Socher
Guosheng Lin
NoLa
107
1,034
0
18 Feb 2020
Deep Double Descent: Where Bigger Models and More Data Hurt
Preetum Nakkiran
Gal Kaplun
Yamini Bansal
Tristan Yang
Boaz Barak
Ilya Sutskever
123
945
0
04 Dec 2019
SELF: Learning to Filter Noisy Labels with Self-Ensembling
Philipp Kratzer
Marc Toussaint
Thi Phuong Nhung Ngo
T. Nguyen
Jim Mainprice
Thomas Brox
NoLa
85
317
0
04 Oct 2019
Symmetric Cross Entropy for Robust Learning with Noisy Labels
Yisen Wang
Xingjun Ma
Zaiyi Chen
Yuan Luo
Jinfeng Yi
James Bailey
NoLa
96
904
0
16 Aug 2019
Are Anchor Points Really Indispensable in Label-Noise Learning?
Xiaobo Xia
Tongliang Liu
N. Wang
Bo Han
Chen Gong
Gang Niu
Masashi Sugiyama
NoLa
73
381
0
01 Jun 2019
Curriculum Loss: Robust Learning and Generalization against Label Corruption
Yueming Lyu
Ivor W. Tsang
NoLa
108
172
0
24 May 2019
MixMatch: A Holistic Approach to Semi-Supervised Learning
David Berthelot
Nicholas Carlini
Ian Goodfellow
Nicolas Papernot
Avital Oliver
Colin Raffel
156
3,033
0
06 May 2019
Unsupervised Data Augmentation for Consistency Training
Qizhe Xie
Zihang Dai
Eduard H. Hovy
Minh-Thang Luong
Quoc V. Le
137
2,321
0
29 Apr 2019
Unsupervised Label Noise Modeling and Loss Correction
Eric Arazo Sanchez
Diego Ortego
Paul Albert
Noel E. O'Connor
Kevin McGuinness
NoLa
90
615
0
25 Apr 2019
How does Disagreement Help Generalization against Label Corruption?
Xingrui Yu
Bo Han
Jiangchao Yao
Gang Niu
Ivor W. Tsang
Masashi Sugiyama
NoLa
76
787
0
14 Jan 2019
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
242
1,655
0
28 Dec 2018
Dimensionality-Driven Learning with Noisy Labels
Xingjun Ma
Yisen Wang
Michael E. Houle
Shuo Zhou
S. Erfani
Shutao Xia
S. Wijewickrema
James Bailey
NoLa
78
434
0
07 Jun 2018
Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels
Bo Han
Quanming Yao
Xingrui Yu
Gang Niu
Miao Xu
Weihua Hu
Ivor Tsang
Masashi Sugiyama
NoLa
120
2,078
0
18 Apr 2018
Iterative Learning with Open-set Noisy Labels
Yisen Wang
Weiyang Liu
Xingjun Ma
James Bailey
H. Zha
Le Song
Shutao Xia
NoLa
84
328
0
31 Mar 2018
Joint Optimization Framework for Learning with Noisy Labels
Daiki Tanaka
Daiki Ikami
T. Yamasaki
Kiyoharu Aizawa
NoLa
74
712
0
30 Mar 2018
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
289
9,803
0
25 Oct 2017
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
285
8,920
0
25 Aug 2017
A Closer Look at Memorization in Deep Networks
Devansh Arpit
Stanislaw Jastrzebski
Nicolas Ballas
David M. Krueger
Emmanuel Bengio
...
Tegan Maharaj
Asja Fischer
Aaron Courville
Yoshua Bengio
Simon Lacoste-Julien
TDI
128
1,825
0
16 Jun 2017
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
348
4,635
0
10 Nov 2016
Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach
Giorgio Patrini
A. Rozza
A. Menon
Richard Nock
Zhuang Li
NoLa
115
1,458
0
13 Sep 2016
SGDR: Stochastic Gradient Descent with Warm Restarts
I. Loshchilov
Frank Hutter
ODL
350
8,174
0
13 Aug 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,426
0
10 Dec 2015
1