ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.15594
  4. Cited By
Limited depth bandit-based strategy for Monte Carlo planning in
  continuous action spaces

Limited depth bandit-based strategy for Monte Carlo planning in continuous action spaces

29 June 2021
R. Quinteiro
Francisco S. Melo
P. A. Santos
ArXiv (abs)PDFHTML

Papers citing "Limited depth bandit-based strategy for Monte Carlo planning in continuous action spaces"

2 / 2 papers shown
Title
POLY-HOOT: Monte-Carlo Planning in Continuous Space MDPs with
  Non-Asymptotic Analysis
POLY-HOOT: Monte-Carlo Planning in Continuous Space MDPs with Non-Asymptotic Analysis
Weichao Mao
Kai Zhang
Qiaomin Xie
Tamer Basar
144
14
0
08 Jun 2020
OpenAI Gym
OpenAI Gym
Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
OffRLODL
223
5,085
0
05 Jun 2016
1