ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.15216
  4. Cited By
A Non-parametric View of FedAvg and FedProx: Beyond Stationary Points

A Non-parametric View of FedAvg and FedProx: Beyond Stationary Points

29 June 2021
Lili Su
Jiaming Xu
Pengkun Yang
    FedML
ArXivPDFHTML

Papers citing "A Non-parametric View of FedAvg and FedProx: Beyond Stationary Points"

7 / 7 papers shown
Title
Linear Convergence in Federated Learning: Tackling Client Heterogeneity
  and Sparse Gradients
Linear Convergence in Federated Learning: Tackling Client Heterogeneity and Sparse Gradients
A. Mitra
Rayana H. Jaafar
George J. Pappas
Hamed Hassani
FedML
72
158
0
14 Feb 2021
FedSplit: An algorithmic framework for fast federated optimization
FedSplit: An algorithmic framework for fast federated optimization
Reese Pathak
Martin J. Wainwright
FedML
149
183
0
11 May 2020
Adaptive Personalized Federated Learning
Adaptive Personalized Federated Learning
Yuyang Deng
Mohammad Mahdi Kamani
M. Mahdavi
FedML
278
549
0
30 Mar 2020
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
130
1,261
0
04 Oct 2018
Local SGD Converges Fast and Communicates Little
Local SGD Converges Fast and Communicates Little
Sebastian U. Stich
FedML
150
1,056
0
24 May 2018
Federated Learning: Strategies for Improving Communication Efficiency
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
267
4,620
0
18 Oct 2016
A Tutorial on Spectral Clustering
A Tutorial on Spectral Clustering
U. V. Luxburg
175
10,497
0
01 Nov 2007
1