Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.14568
Cited By
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity
28 June 2021
Shiwei Liu
Tianlong Chen
Zahra Atashgahi
Xiaohan Chen
Ghada Sokar
Elena Mocanu
Mykola Pechenizkiy
Zhangyang Wang
D. Mocanu
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity"
39 / 39 papers shown
Title
Audio-Driven Talking Face Video Generation with Joint Uncertainty Learning
Yifan Xie
Fei Ma
Yi Bin
Ying He
Fei Richard Yu
57
0
0
26 Apr 2025
Embedded Federated Feature Selection with Dynamic Sparse Training: Balancing Accuracy-Cost Tradeoffs
Afsaneh Mahanipour
Hana Khamfroush
FedML
34
0
0
07 Apr 2025
Ensembles of Low-Rank Expert Adapters
Yinghao Li
Vianne Gao
Chao Zhang
MohamadAli Torkamani
60
0
0
31 Jan 2025
DistPred: A Distribution-Free Probabilistic Inference Method for Regression and Forecasting
Daojun Liang
Haixia Zhang
Dongfeng Yuan
UQCV
72
0
0
08 Jan 2025
Navigating Extremes: Dynamic Sparsity in Large Output Spaces
Nasib Ullah
Erik Schultheis
Mike Lasby
Yani Andrew Ioannou
Rohit Babbar
33
0
0
05 Nov 2024
Low-Cost Self-Ensembles Based on Multi-Branch Transformation and Grouped Convolution
Hojung Lee
Jong-Seok Lee
3DV
35
1
0
05 Aug 2024
Network Fission Ensembles for Low-Cost Self-Ensembles
Hojung Lee
Jong-Seok Lee
UQCV
52
0
0
05 Aug 2024
Sharpness-diversity tradeoff: improving flat ensembles with SharpBalance
Haiquan Lu
Xiaotian Liu
Yefan Zhou
Qunli Li
Kurt Keutzer
Michael W. Mahoney
Yujun Yan
Huanrui Yang
Yaoqing Yang
38
1
0
17 Jul 2024
Adaptive Stochastic Weight Averaging
Caglar Demir
Arnab Sharma
Axel-Cyrille Ngonga Ngomo
MoMe
26
1
0
27 Jun 2024
Gradient-Congruity Guided Federated Sparse Training
Chris Xing Tian
Yibing Liu
Haoliang Li
Ray C.C. Cheung
Shiqi Wang
FedML
26
1
0
02 May 2024
Embracing Unknown Step by Step: Towards Reliable Sparse Training in Real World
Bowen Lei
Dongkuan Xu
Ruqi Zhang
Bani Mallick
UQCV
33
0
0
29 Mar 2024
Diversity-Aware Agnostic Ensemble of Sharpness Minimizers
Anh-Vu Bui
Vy Vo
Tung Pham
Dinh Q. Phung
Trung Le
FedML
UQCV
26
1
0
19 Mar 2024
Optimal Parameter and Neuron Pruning for Out-of-Distribution Detection
Chao Chen
Zhihang Fu
Kai-Chun Liu
Ze Chen
Mingyuan Tao
Jieping Ye
OODD
28
3
0
04 Feb 2024
Stochastic Subnetwork Annealing: A Regularization Technique for Fine Tuning Pruned Subnetworks
Tim Whitaker
Darrell Whitley
25
0
0
16 Jan 2024
REST: Enhancing Group Robustness in DNNs through Reweighted Sparse Training
Jiaxu Zhao
Lu Yin
Shiwei Liu
Meng Fang
Mykola Pechenizkiy
23
2
0
05 Dec 2023
PaSCo: Urban 3D Panoptic Scene Completion with Uncertainty Awareness
Anh-Quan Cao
Angela Dai
Raoul de Charette
UQCV
13
19
0
04 Dec 2023
Jointly-Learned Exit and Inference for a Dynamic Neural Network : JEI-DNN
Florence Regol
Joud Chataoui
Mark J. Coates
26
6
0
13 Oct 2023
Sparse Model Soups: A Recipe for Improved Pruning via Model Averaging
Max Zimmer
Christoph Spiegel
S. Pokutta
MoMe
41
14
0
29 Jun 2023
Optimal Transport Model Distributional Robustness
Van-Anh Nguyen
Trung Le
Anh Tuan Bui
Thanh-Toan Do
Dinh Q. Phung
OOD
30
3
0
07 Jun 2023
Sparsity May Cry: Let Us Fail (Current) Sparse Neural Networks Together!
Shiwei Liu
Tianlong Chen
Zhenyu (Allen) Zhang
Xuxi Chen
Tianjin Huang
Ajay Jaiswal
Zhangyang Wang
26
29
0
03 Mar 2023
Ten Lessons We Have Learned in the New "Sparseland": A Short Handbook for Sparse Neural Network Researchers
Shiwei Liu
Zhangyang Wang
30
30
0
06 Feb 2023
A Rigorous Uncertainty-Aware Quantification Framework Is Essential for Reproducible and Replicable Machine Learning Workflows
Line C. Pouchard
Kristofer G. Reyes
Francis J. Alexander
Byung-Jun Yoon
27
2
0
13 Jan 2023
Where to Pay Attention in Sparse Training for Feature Selection?
Ghada Sokar
Zahra Atashgahi
Mykola Pechenizkiy
D. Mocanu
25
17
0
26 Nov 2022
Packed-Ensembles for Efficient Uncertainty Estimation
Olivier Laurent
Adrien Lafage
Enzo Tartaglione
Geoffrey Daniel
Jean-Marc Martinez
Andrei Bursuc
Gianni Franchi
OODD
41
32
0
17 Oct 2022
Compute-Efficient Deep Learning: Algorithmic Trends and Opportunities
Brian Bartoldson
B. Kailkhura
Davis W. Blalock
29
47
0
13 Oct 2022
Lottery Pools: Winning More by Interpolating Tickets without Increasing Training or Inference Cost
Lu Yin
Shiwei Liu
Fang Meng
Tianjin Huang
Vlado Menkovski
Mykola Pechenizkiy
17
13
0
23 Aug 2022
Exploring Lottery Ticket Hypothesis in Spiking Neural Networks
Youngeun Kim
Yuhang Li
Hyoungseob Park
Yeshwanth Venkatesha
Ruokai Yin
Priyadarshini Panda
22
46
0
04 Jul 2022
CARD: Classification and Regression Diffusion Models
Xizewen Han
Huangjie Zheng
Mingyuan Zhou
DiffM
38
108
0
15 Jun 2022
Deep Isolation Forest for Anomaly Detection
Hongzuo Xu
Guansong Pang
Yijie Wang
Yongjun Wang
27
182
0
14 Jun 2022
Superposing Many Tickets into One: A Performance Booster for Sparse Neural Network Training
Lu Yin
Vlado Menkovski
Meng Fang
Tianjin Huang
Yulong Pei
Mykola Pechenizkiy
D. Mocanu
Shiwei Liu
24
8
0
30 May 2022
Diverse Lottery Tickets Boost Ensemble from a Single Pretrained Model
Sosuke Kobayashi
Shun Kiyono
Jun Suzuki
Kentaro Inui
MoMe
18
7
0
24 May 2022
Federated Dynamic Sparse Training: Computing Less, Communicating Less, Yet Learning Better
Sameer Bibikar
H. Vikalo
Zhangyang Wang
Xiaohan Chen
FedML
20
95
0
18 Dec 2021
Avoiding Forgetting and Allowing Forward Transfer in Continual Learning via Sparse Networks
Ghada Sokar
D. Mocanu
Mykola Pechenizkiy
CLL
21
8
0
11 Oct 2021
Connectivity Matters: Neural Network Pruning Through the Lens of Effective Sparsity
Artem Vysogorets
Julia Kempe
13
19
0
05 Jul 2021
Dynamic Sparse Training for Deep Reinforcement Learning
Ghada Sokar
Elena Mocanu
D. Mocanu
Mykola Pechenizkiy
Peter Stone
21
52
0
08 Jun 2021
Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks
Torsten Hoefler
Dan Alistarh
Tal Ben-Nun
Nikoli Dryden
Alexandra Peste
MQ
141
684
0
31 Jan 2021
Fixing the train-test resolution discrepancy: FixEfficientNet
Hugo Touvron
Andrea Vedaldi
Matthijs Douze
Hervé Jégou
AAML
189
110
0
18 Mar 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
282
9,136
0
06 Jun 2015
1