Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.14473
Cited By
Error analysis for physics informed neural networks (PINNs) approximating Kolmogorov PDEs
28 June 2021
Tim De Ryck
Siddhartha Mishra
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Error analysis for physics informed neural networks (PINNs) approximating Kolmogorov PDEs"
41 / 41 papers shown
Title
Improved Uncertainty Quantification in Physics-Informed Neural Networks Using Error Bounds and Solution Bundles
P. Flores
Olga Graf
P. Protopapas
K. Pichara
PINN
33
0
0
09 May 2025
Physics-Informed Deep B-Spline Networks for Dynamical Systems
Zhuoyuan Wang
Raffaele Romagnoli
Jasmine Ratchford
Yorie Nakahira
PINN
AI4CE
53
0
0
21 Mar 2025
Challenges and Advancements in Modeling Shock Fronts with Physics-Informed Neural Networks: A Review and Benchmarking Study
J. Abbasi
Ameya D. Jagtap
Ben Moseley
Aksel Hiorth
P. Andersen
PINN
AI4CE
44
1
0
14 Mar 2025
Understanding Generalization in Physics Informed Models through Affine Variety Dimensions
Takeshi Koshizuka
Issei Sato
AI4CE
109
0
0
31 Jan 2025
Exact and approximate error bounds for physics-informed neural networks
Augusto T. Chantada
Pavlos Protopapas
Luca Gomez Bachar
Susana J. Landau
Claudia G. Scóccola
PINN
59
0
0
21 Nov 2024
Beyond Derivative Pathology of PINNs: Variable Splitting Strategy with Convergence Analysis
Yesom Park
Changhoon Song
Myungjoo Kang
28
2
0
30 Sep 2024
Parallel-in-Time Solutions with Random Projection Neural Networks
M. Betcke
L. Kreusser
Davide Murari
26
1
0
19 Aug 2024
Generalizable Physics-Informed Learning for Stochastic Safety-Critical Systems
Zhuoyuan Wang
Albert Chern
Yorie Nakahira
27
0
0
11 Jul 2024
Feynman-Kac Operator Expectation Estimator
Jingyuan Li
Wei Liu
30
0
0
02 Jul 2024
Solving Poisson Equations using Neural Walk-on-Spheres
Hong Chul Nam
Julius Berner
Anima Anandkumar
34
3
0
05 Jun 2024
Astral: training physics-informed neural networks with error majorants
V. Fanaskov
Tianchi Yu
Alexander Rudikov
Ivan V. Oseledets
33
1
0
04 Jun 2024
Physics-informed deep learning and compressive collocation for high-dimensional diffusion-reaction equations: practical existence theory and numerics
Simone Brugiapaglia
N. Dexter
Samir Karam
Weiqi Wang
AI4CE
DiffM
43
1
0
03 Jun 2024
Automatic Differentiation is Essential in Training Neural Networks for Solving Differential Equations
Chuqi Chen
Yahong Yang
Yang Xiang
Wenrui Hao
26
2
0
23 May 2024
Unveiling the optimization process of Physics Informed Neural Networks: How accurate and competitive can PINNs be?
Jorge F. Urbán
P. Stefanou
José A. Pons
PINN
45
6
0
07 May 2024
Deep adaptive sampling for surrogate modeling without labeled data
Xili Wang
Keju Tang
Jiayu Zhai
Xiaoliang Wan
Chao Yang
35
2
0
17 Feb 2024
Correctness Verification of Neural Networks Approximating Differential Equations
Petros Ellinas
Rahul Nellikkath
Ignasi Ventura
Jochen Stiasny
Spyros Chatzivasileiadis
37
1
0
12 Feb 2024
Error Estimation for Physics-informed Neural Networks Approximating Semilinear Wave Equations
Beatrice Lorenz
Aras Bacho
Gitta Kutyniok
PINN
16
2
0
11 Feb 2024
Preconditioning for Physics-Informed Neural Networks
Songming Liu
Chang Su
J. Yao
Zhongkai Hao
Hang Su
Youjia Wu
Jun Zhu
AI4CE
PINN
38
5
0
01 Feb 2024
Deeper or Wider: A Perspective from Optimal Generalization Error with Sobolev Loss
Yahong Yang
Juncai He
AI4CE
32
7
0
31 Jan 2024
Binary structured physics-informed neural networks for solving equations with rapidly changing solutions
Yanzhi Liu
Ruifan Wu
Ying Jiang
PINN
21
2
0
23 Jan 2024
Optimal Deep Neural Network Approximation for Korobov Functions with respect to Sobolev Norms
Yahong Yang
Yulong Lu
37
3
0
08 Nov 2023
An operator preconditioning perspective on training in physics-informed machine learning
Tim De Ryck
Florent Bonnet
Siddhartha Mishra
Emmanuel de Bezenac
AI4CE
39
14
0
09 Oct 2023
A numerical approach for the fractional Laplacian via deep neural networks
Nicolás Valenzuela
29
3
0
30 Aug 2023
MultiAdam: Parameter-wise Scale-invariant Optimizer for Multiscale Training of Physics-informed Neural Networks
J. Yao
Chang Su
Zhongkai Hao
Songming Liu
Hang Su
Jun Zhu
ODL
PINN
AI4CE
11
12
0
05 Jun 2023
Error Analysis of Kernel/GP Methods for Nonlinear and Parametric PDEs
Pau Batlle
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
34
17
0
08 May 2023
Convergence and error analysis of PINNs
Nathan Doumèche
Gérard Biau
D. Boyer
PINN
AI4CE
42
17
0
02 May 2023
On the Generalization of PINNs outside the training domain and the Hyperparameters influencing it
Andrea Bonfanti
Roberto Santana
M. Ellero
Babak Gholami
AI4CE
PINN
35
3
0
15 Feb 2023
Entropy-dissipation Informed Neural Network for McKean-Vlasov Type PDEs
Zebang Shen
Zhenfu Wang
19
4
0
11 Feb 2023
Neural tangent kernel analysis of PINN for advection-diffusion equation
M. Saadat
B. Gjorgiev
L. Das
G. Sansavini
25
0
0
21 Nov 2022
Augmented Physics-Informed Neural Networks (APINNs): A gating network-based soft domain decomposition methodology
Zheyuan Hu
Ameya Dilip Jagtap
George Karniadakis
Kenji Kawaguchi
31
75
0
16 Nov 2022
Physics-Informed Machine Learning: A Survey on Problems, Methods and Applications
Zhongkai Hao
Songming Liu
Yichi Zhang
Chengyang Ying
Yao Feng
Hang Su
Jun Zhu
PINN
AI4CE
28
89
0
15 Nov 2022
wPINNs: Weak Physics informed neural networks for approximating entropy solutions of hyperbolic conservation laws
Tim De Ryck
Siddhartha Mishra
Roberto Molinaro
PINN
27
28
0
18 Jul 2022
Evaluating Error Bound for Physics-Informed Neural Networks on Linear Dynamical Systems
Shuheng Liu
Xiyue Huang
P. Protopapas
PINN
13
5
0
03 Jul 2022
Generic bounds on the approximation error for physics-informed (and) operator learning
Tim De Ryck
Siddhartha Mishra
PINN
59
59
0
23 May 2022
Error estimates for physics informed neural networks approximating the Navier-Stokes equations
Tim De Ryck
Ameya Dilip Jagtap
S. Mishra
PINN
40
115
0
17 Mar 2022
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
26
1,179
0
14 Jan 2022
Interpolating between BSDEs and PINNs: deep learning for elliptic and parabolic boundary value problems
Nikolas Nusken
Lorenz Richter
PINN
DiffM
31
27
0
07 Dec 2021
When Do Extended Physics-Informed Neural Networks (XPINNs) Improve Generalization?
Zheyuan Hu
Ameya Dilip Jagtap
George Karniadakis
Kenji Kawaguchi
AI4CE
PINN
22
83
0
20 Sep 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
211
2,287
0
18 Oct 2020
Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating PDEs
Siddhartha Mishra
Roberto Molinaro
PINN
25
170
0
29 Jun 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
183
759
0
13 Mar 2020
1