ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.14008
  4. Cited By
Semi-Supervised Deep Ensembles for Blind Image Quality Assessment

Semi-Supervised Deep Ensembles for Blind Image Quality Assessment

26 June 2021
Zhihua Wang
Dingquan Li
Kede Ma
ArXivPDFHTML

Papers citing "Semi-Supervised Deep Ensembles for Blind Image Quality Assessment"

9 / 9 papers shown
Title
Continual Learning for Blind Image Quality Assessment
Continual Learning for Blind Image Quality Assessment
Weixia Zhang
Dingquan Li
Chao Ma
Guangtao Zhai
Xiaokang Yang
Kede Ma
VLM
43
87
0
19 Feb 2021
Generalized Negative Correlation Learning for Deep Ensembling
Generalized Negative Correlation Learning for Deep Ensembling
Sebastian Buschjäger
Lukas Pfahler
K. Morik
FedML
BDL
UQCV
36
17
0
05 Nov 2020
Long-tailed Recognition by Routing Diverse Distribution-Aware Experts
Long-tailed Recognition by Routing Diverse Distribution-Aware Experts
Xudong Wang
Long Lian
Zhongqi Miao
Ziwei Liu
Stella X. Yu
105
389
0
05 Oct 2020
From Patches to Pictures (PaQ-2-PiQ): Mapping the Perceptual Space of
  Picture Quality
From Patches to Pictures (PaQ-2-PiQ): Mapping the Perceptual Space of Picture Quality
Zhenqiang Ying
Haoran Niu
Praful Gupta
D. Mahajan
Deepti Ghadiyaram
A. Bovik
72
306
0
20 Dec 2019
KonIQ-10k: An ecologically valid database for deep learning of blind
  image quality assessment
KonIQ-10k: An ecologically valid database for deep learning of blind image quality assessment
Vlad Hosu
Hanhe Lin
T. Szirányi
Dietmar Saupe
102
567
0
14 Oct 2019
NormFace: L2 Hypersphere Embedding for Face Verification
NormFace: L2 Hypersphere Embedding for Face Verification
Feng Wang
Xiang Xiang
Jian Cheng
Alan Yuille
3DH
CVBM
61
744
0
21 Apr 2017
Deep Neural Networks for No-Reference and Full-Reference Image Quality
  Assessment
Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment
S. Bosse
Dominique Maniry
K. Müller
Thomas Wiegand
Wojciech Samek
72
995
0
06 Dec 2016
Why M Heads are Better than One: Training a Diverse Ensemble of Deep
  Networks
Why M Heads are Better than One: Training a Diverse Ensemble of Deep Networks
Stefan Lee
Senthil Purushwalkam
Michael Cogswell
David J. Crandall
Dhruv Batra
FedML
UQCV
99
316
0
19 Nov 2015
Delving Deep into Rectifiers: Surpassing Human-Level Performance on
  ImageNet Classification
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
298
18,609
0
06 Feb 2015
1