Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.13361
Cited By
Multifidelity Modeling for Physics-Informed Neural Networks (PINNs)
25 June 2021
Michael Penwarden
Shandian Zhe
A. Narayan
Robert M. Kirby
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Multifidelity Modeling for Physics-Informed Neural Networks (PINNs)"
16 / 16 papers shown
Title
Equilibrium Conserving Neural Operators for Super-Resolution Learning
Vivek Oommen
Andreas E. Robertson
Daniel Diaz
Coleman Alleman
Zhen Zhang
Anthony D. Rollett
George Karniadakis
Rémi Dingreville
33
1
0
18 Apr 2025
Graph Laplacian-based Bayesian Multi-fidelity Modeling
Orazio Pinti
Jeremy M. Budd
Franca Hoffmann
Assad A. Oberai
35
1
0
12 Sep 2024
Finite basis Kolmogorov-Arnold networks: domain decomposition for data-driven and physics-informed problems
Amanda A. Howard
Bruno Jacob
Sarah H. Murphy
Alexander Heinlein
P. Stinis
AI4CE
41
26
0
28 Jun 2024
Kolmogorov n-Widths for Multitask Physics-Informed Machine Learning (PIML) Methods: Towards Robust Metrics
Michael Penwarden
H. Owhadi
Robert M. Kirby
AI4CE
22
1
0
16 Feb 2024
Stacked networks improve physics-informed training: applications to neural networks and deep operator networks
Amanda A. Howard
Sarah H. Murphy
Shady E. Ahmed
P. Stinis
AI4CE
55
18
0
11 Nov 2023
A few-shot graph Laplacian-based approach for improving the accuracy of low-fidelity data
Orazio Pinti
Assad A. Oberai
20
0
0
29 Mar 2023
Physics-Informed Deep Learning For Traffic State Estimation: A Survey and the Outlook
Xuan Di
Rongye Shi
Zhaobin Mo
Yongjie Fu
PINN
AI4TS
AI4CE
29
28
0
03 Mar 2023
An iterative multi-fidelity approach for model order reduction of multi-dimensional input parametric PDE systems
Manisha Chetry
D. Borzacchiello
Lucas Lestandi
Luisa Rocha-Da-Silva
12
0
0
23 Jan 2023
Combining physics-based and data-driven techniques for reliable hybrid analysis and modeling using the corrective source term approach
Sindre Stenen Blakseth
Adil Rasheed
T. Kvamsdal
Omer San
AI4CE
26
31
0
07 Jun 2022
Multifidelity Deep Operator Networks For Data-Driven and Physics-Informed Problems
Amanda A. Howard
M. Perego
G. Karniadakis
P. Stinis
AI4CE
36
53
0
19 Apr 2022
AutoIP: A United Framework to Integrate Physics into Gaussian Processes
D. Long
Zhilin Wang
Aditi S. Krishnapriyan
Robert M. Kirby
Shandian Zhe
Michael W. Mahoney
AI4CE
26
14
0
24 Feb 2022
State-of-the-Art Review of Design of Experiments for Physics-Informed Deep Learning
Sourav Das
S. Tesfamariam
PINN
AI4CE
11
19
0
13 Feb 2022
Cost-effective Framework for Gradual Domain Adaptation with Multifidelity
Shogo Sagawa
H. Hino
CLL
29
6
0
09 Feb 2022
A Metalearning Approach for Physics-Informed Neural Networks (PINNs): Application to Parameterized PDEs
Michael Penwarden
Shandian Zhe
A. Narayan
Robert M. Kirby
PINN
AI4CE
25
39
0
26 Oct 2021
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
183
760
0
13 Mar 2020
Benefits of depth in neural networks
Matus Telgarsky
148
602
0
14 Feb 2016
1