ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.12723
  4. Cited By
Meaningfully Debugging Model Mistakes using Conceptual Counterfactual
  Explanations

Meaningfully Debugging Model Mistakes using Conceptual Counterfactual Explanations

24 June 2021
Abubakar Abid
Mert Yuksekgonul
James Zou
    CML
ArXivPDFHTML

Papers citing "Meaningfully Debugging Model Mistakes using Conceptual Counterfactual Explanations"

16 / 16 papers shown
Title
The Spotlight: A General Method for Discovering Systematic Errors in
  Deep Learning Models
The Spotlight: A General Method for Discovering Systematic Errors in Deep Learning Models
G. dÉon
Jason dÉon
J. R. Wright
Kevin Leyton-Brown
57
74
0
01 Jul 2021
Dynabench: Rethinking Benchmarking in NLP
Dynabench: Rethinking Benchmarking in NLP
Douwe Kiela
Max Bartolo
Yixin Nie
Divyansh Kaushik
Atticus Geiger
...
Pontus Stenetorp
Robin Jia
Joey Tianyi Zhou
Christopher Potts
Adina Williams
156
401
0
07 Apr 2021
WILDS: A Benchmark of in-the-Wild Distribution Shifts
WILDS: A Benchmark of in-the-Wild Distribution Shifts
Pang Wei Koh
Shiori Sagawa
Henrik Marklund
Sang Michael Xie
Marvin Zhang
...
A. Kundaje
Emma Pierson
Sergey Levine
Chelsea Finn
Percy Liang
OOD
168
1,418
0
14 Dec 2020
A Patient-Centric Dataset of Images and Metadata for Identifying
  Melanomas Using Clinical Context
A Patient-Centric Dataset of Images and Metadata for Identifying Melanomas Using Clinical Context
V. Rotemberg
N. Kurtansky
B. Betz‐Stablein
L. Caffery
E. Chousakos
...
George Shih
A. Stratigos
P. Tschandl
Jochen Weber
H. Soyer
45
402
0
07 Aug 2020
Learning under Concept Drift: A Review
Learning under Concept Drift: A Review
Jie Lu
Anjin Liu
Fan Dong
Feng Gu
João Gama
Guangquan Zhang
AI4TS
55
1,262
0
13 Apr 2020
CheXclusion: Fairness gaps in deep chest X-ray classifiers
CheXclusion: Fairness gaps in deep chest X-ray classifiers
Laleh Seyyed-Kalantari
Guanxiong Liu
Matthew B. A. McDermott
Irene Y. Chen
Marzyeh Ghassemi
OOD
74
289
0
14 Feb 2020
Evaluating Saliency Map Explanations for Convolutional Neural Networks:
  A User Study
Evaluating Saliency Map Explanations for Convolutional Neural Networks: A User Study
Ahmed Alqaraawi
M. Schuessler
Philipp Weiß
Enrico Costanza
N. Bianchi-Berthouze
AAML
FAtt
XAI
59
199
0
03 Feb 2020
Counterfactual Visual Explanations
Counterfactual Visual Explanations
Yash Goyal
Ziyan Wu
Jan Ernst
Dhruv Batra
Devi Parikh
Stefan Lee
CML
73
510
0
16 Apr 2019
CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and
  Expert Comparison
CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison
Jeremy Irvin
Pranav Rajpurkar
M. Ko
Yifan Yu
Silviana Ciurea-Ilcus
...
D. Larson
C. Langlotz
Bhavik Patel
M. Lungren
A. Ng
108
2,568
0
21 Jan 2019
Explanations based on the Missing: Towards Contrastive Explanations with
  Pertinent Negatives
Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives
Amit Dhurandhar
Pin-Yu Chen
Ronny Luss
Chun-Chen Tu
Pai-Shun Ting
Karthikeyan Shanmugam
Payel Das
FAtt
99
587
0
21 Feb 2018
Detecting and Correcting for Label Shift with Black Box Predictors
Detecting and Correcting for Label Shift with Black Box Predictors
Zachary Chase Lipton
Yu Wang
Alex Smola
OOD
56
548
0
12 Feb 2018
Net2Vec: Quantifying and Explaining how Concepts are Encoded by Filters
  in Deep Neural Networks
Net2Vec: Quantifying and Explaining how Concepts are Encoded by Filters in Deep Neural Networks
Ruth C. Fong
Andrea Vedaldi
FAtt
60
264
0
10 Jan 2018
Counterfactual Explanations without Opening the Black Box: Automated
  Decisions and the GDPR
Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR
Sandra Wachter
Brent Mittelstadt
Chris Russell
MLAU
94
2,332
0
01 Nov 2017
Understanding Black-box Predictions via Influence Functions
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
155
2,854
0
14 Mar 2017
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB
  model size
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size
F. Iandola
Song Han
Matthew W. Moskewicz
Khalid Ashraf
W. Dally
Kurt Keutzer
132
7,448
0
24 Feb 2016
Learning Deep Features for Discriminative Localization
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSL
SSeg
FAtt
214
9,280
0
14 Dec 2015
1