Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.12543
Cited By
Synthetic Benchmarks for Scientific Research in Explainable Machine Learning
23 June 2021
Yang Liu
Sujay Khandagale
Colin White
W. Neiswanger
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Synthetic Benchmarks for Scientific Research in Explainable Machine Learning"
13 / 13 papers shown
Title
Feature Importance Depends on Properties of the Data: Towards Choosing the Correct Explanations for Your Data and Decision Trees based Models
Célia Wafa Ayad
Thomas Bonnier
Benjamin Bosch
Sonali Parbhoo
Jesse Read
FAtt
XAI
100
0
0
11 Feb 2025
Beyond the Veil of Similarity: Quantifying Semantic Continuity in Explainable AI
Qi Huang
Emanuele Mezzi
Osman Mutlu
Miltiadis Kofinas
Vidya Prasad
Shadnan Azwad Khan
Elena Ranguelova
N. V. Stein
45
0
0
17 Jul 2024
Accurate estimation of feature importance faithfulness for tree models
Mateusz Gajewski
Adam Karczmarz
Mateusz Rapicki
Piotr Sankowski
37
0
0
04 Apr 2024
Precise Benchmarking of Explainable AI Attribution Methods
Rafael Brandt
Daan Raatjens
G. Gaydadjiev
XAI
24
4
0
06 Aug 2023
CoRTX: Contrastive Framework for Real-time Explanation
Yu-Neng Chuang
Guanchu Wang
Fan Yang
Quan-Gen Zhou
Pushkar Tripathi
Xuanting Cai
Xia Hu
46
19
0
05 Mar 2023
Explainable AI does not provide the explanations end-users are asking for
Savio Rozario
G. Cevora
XAI
12
0
0
25 Jan 2023
BAGEL: A Benchmark for Assessing Graph Neural Network Explanations
Mandeep Rathee
Thorben Funke
Avishek Anand
Megha Khosla
36
14
0
28 Jun 2022
SIBILA: A novel interpretable ensemble of general-purpose machine learning models applied to medical contexts
A. Banegas-Luna
Horacio Pérez-Sánchez
30
1
0
12 May 2022
The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective
Satyapriya Krishna
Tessa Han
Alex Gu
Steven Wu
S. Jabbari
Himabindu Lakkaraju
177
185
0
03 Feb 2022
Deep Neural Networks and Tabular Data: A Survey
V. Borisov
Tobias Leemann
Kathrin Seßler
Johannes Haug
Martin Pawelczyk
Gjergji Kasneci
LMTD
27
645
0
05 Oct 2021
Probing GNN Explainers: A Rigorous Theoretical and Empirical Analysis of GNN Explanation Methods
Chirag Agarwal
Marinka Zitnik
Himabindu Lakkaraju
19
51
0
16 Jun 2021
Fairness in Machine Learning
L. Oneto
Silvia Chiappa
FaML
249
488
0
31 Dec 2020
A Survey on Neural Network Interpretability
Yu Zhang
Peter Tiño
A. Leonardis
K. Tang
FaML
XAI
141
660
0
28 Dec 2020
1