Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.12417
Cited By
False perfection in machine prediction: Detecting and assessing circularity problems in machine learning
23 June 2021
Michael Hagmann
Stefan Riezler
Re-assign community
ArXiv
PDF
HTML
Papers citing
"False perfection in machine prediction: Detecting and assessing circularity problems in machine learning"
10 / 10 papers shown
Title
Beyond Leaderboards: A survey of methods for revealing weaknesses in Natural Language Inference data and models
Viktor Schlegel
Goran Nenadic
Riza Batista-Navarro
ELM
53
18
0
29 May 2020
Neural Additive Models: Interpretable Machine Learning with Neural Nets
Rishabh Agarwal
Levi Melnick
Nicholas Frosst
Xuezhou Zhang
Ben Lengerich
R. Caruana
Geoffrey E. Hinton
75
417
0
29 Apr 2020
Leveraging Implicit Expert Knowledge for Non-Circular Machine Learning in Sepsis Prediction
Shigehiko Schamoni
H. Lindner
Verena Schneider-Lindner
M. Thiel
Stefan Riezler
42
23
0
20 Sep 2019
Don't Take the Easy Way Out: Ensemble Based Methods for Avoiding Known Dataset Biases
Christopher Clark
Mark Yatskar
Luke Zettlemoyer
OOD
69
465
0
09 Sep 2019
Unmasking Clever Hans Predictors and Assessing What Machines Really Learn
Sebastian Lapuschkin
S. Wäldchen
Alexander Binder
G. Montavon
Wojciech Samek
K. Müller
84
1,009
0
26 Feb 2019
Learning Not to Learn: Training Deep Neural Networks with Biased Data
Byungju Kim
Hyunwoo Kim
Kyungsu Kim
Sungjin Kim
Junmo Kim
OOD
57
409
0
26 Dec 2018
Distill-and-Compare: Auditing Black-Box Models Using Transparent Model Distillation
S. Tan
R. Caruana
Giles Hooker
Yin Lou
MLAU
101
185
0
17 Oct 2017
Explanation in Artificial Intelligence: Insights from the Social Sciences
Tim Miller
XAI
236
4,249
0
22 Jun 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
371
3,776
0
28 Feb 2017
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
943
16,931
0
16 Feb 2016
1