ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.12379
  4. Cited By
AC/DC: Alternating Compressed/DeCompressed Training of Deep Neural
  Networks
v1v2 (latest)

AC/DC: Alternating Compressed/DeCompressed Training of Deep Neural Networks

23 June 2021
Alexandra Peste
Eugenia Iofinova
Adrian Vladu
Dan Alistarh
    AI4CE
ArXiv (abs)PDFHTMLGithub (23★)

Papers citing "AC/DC: Alternating Compressed/DeCompressed Training of Deep Neural Networks"

46 / 46 papers shown
Title
Dynamic Sparse Training versus Dense Training: The Unexpected Winner in Image Corruption Robustness
Dynamic Sparse Training versus Dense Training: The Unexpected Winner in Image Corruption Robustness
Boqian Wu
Q. Xiao
Shunxin Wang
N. Strisciuglio
Mykola Pechenizkiy
M. V. Keulen
Decebal Constantin Mocanu
Elena Mocanu
OOD3DH
198
3
0
03 Oct 2024
Mask in the Mirror: Implicit Sparsification
Mask in the Mirror: Implicit Sparsification
Tom Jacobs
R. Burkholz
182
4
0
19 Aug 2024
SequentialAttention++ for Block Sparsification: Differentiable Pruning Meets Combinatorial Optimization
SequentialAttention++ for Block Sparsification: Differentiable Pruning Meets Combinatorial Optimization
T. Yasuda
Kyriakos Axiotis
Gang Fu
M. Bateni
Vahab Mirrokni
173
0
0
27 Feb 2024
End-to-end Feature Selection Approach for Learning Skinny Trees
End-to-end Feature Selection Approach for Learning Skinny Trees
Shibal Ibrahim
Kayhan Behdin
Rahul Mazumder
503
0
0
28 Oct 2023
Top-KAST: Top-K Always Sparse Training
Top-KAST: Top-K Always Sparse Training
Siddhant M. Jayakumar
Razvan Pascanu
Jack W. Rae
Simon Osindero
Erich Elsen
157
100
0
07 Jun 2021
Accelerating Sparse Deep Neural Networks
Accelerating Sparse Deep Neural Networks
Asit K. Mishra
J. Latorre
Jeff Pool
Darko Stosic
Dusan Stosic
Ganesh Venkatesh
Chong Yu
Paulius Micikevicius
160
235
0
16 Apr 2021
Learning N:M Fine-grained Structured Sparse Neural Networks From Scratch
Learning N:M Fine-grained Structured Sparse Neural Networks From Scratch
Aojun Zhou
Yukun Ma
Junnan Zhu
Jianbo Liu
Zhijie Zhang
Kun Yuan
Wenxiu Sun
Hongsheng Li
207
248
0
08 Feb 2021
Sparsity in Deep Learning: Pruning and growth for efficient inference
  and training in neural networks
Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks
Torsten Hoefler
Dan Alistarh
Tal Ben-Nun
Nikoli Dryden
Alexandra Peste
MQ
314
724
0
31 Jan 2021
TensorFlow Lite Micro: Embedded Machine Learning on TinyML Systems
TensorFlow Lite Micro: Embedded Machine Learning on TinyML Systems
R. David
Jared Duke
Advait Jain
Vijay Janapa Reddi
Nat Jeffries
...
Meghna Natraj
Shlomi Regev
Rocky Rhodes
Tiezhen Wang
Pete Warden
243
481
0
17 Oct 2020
Sparse Convex Optimization via Adaptively Regularized Hard Thresholding
Sparse Convex Optimization via Adaptively Regularized Hard Thresholding
Kyriakos Axiotis
M. Sviridenko
122
16
0
25 Jun 2020
Dynamic Model Pruning with Feedback
Dynamic Model Pruning with Feedback
Tao R. Lin
Sebastian U. Stich
Luis Barba
Daniil Dmitriev
Martin Jaggi
155
204
0
12 Jun 2020
Pruning neural networks without any data by iteratively conserving
  synaptic flow
Pruning neural networks without any data by iteratively conserving synaptic flow
Hidenori Tanaka
D. Kunin
Daniel L. K. Yamins
Surya Ganguli
176
648
0
09 Jun 2020
Soft Threshold Weight Reparameterization for Learnable Sparsity
Soft Threshold Weight Reparameterization for Learnable Sparsity
Aditya Kusupati
Vivek Ramanujan
Raghav Somani
Mitchell Wortsman
Prateek Jain
Sham Kakade
Ali Farhadi
148
247
0
08 Feb 2020
Landscape Connectivity and Dropout Stability of SGD Solutions for
  Over-parameterized Neural Networks
Landscape Connectivity and Dropout Stability of SGD Solutions for Over-parameterized Neural Networks
Aleksandr Shevchenko
Marco Mondelli
169
37
0
20 Dec 2019
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
544
42,591
0
03 Dec 2019
Rigging the Lottery: Making All Tickets Winners
Rigging the Lottery: Making All Tickets Winners
Utku Evci
Trevor Gale
Jacob Menick
Pablo Samuel Castro
Erich Elsen
197
607
0
25 Nov 2019
Fast Sparse ConvNets
Fast Sparse ConvNets
Erich Elsen
Marat Dukhan
Trevor Gale
Karen Simonyan
172
153
0
21 Nov 2019
Understanding Top-k Sparsification in Distributed Deep Learning
Understanding Top-k Sparsification in Distributed Deep Learning
Shaoshuai Shi
Xiaowen Chu
Ka Chun Cheung
Simon See
226
101
0
20 Nov 2019
Sparse Networks from Scratch: Faster Training without Losing Performance
Sparse Networks from Scratch: Faster Training without Losing Performance
Tim Dettmers
Luke Zettlemoyer
145
340
0
10 Jul 2019
Large Batch Optimization for Deep Learning: Training BERT in 76 minutes
Large Batch Optimization for Deep Learning: Training BERT in 76 minutes
Yang You
Jing Li
Sashank J. Reddi
Jonathan Hseu
Sanjiv Kumar
Srinadh Bhojanapalli
Xiaodan Song
J. Demmel
Kurt Keutzer
Cho-Jui Hsieh
ODL
265
999
0
01 Apr 2019
The State of Sparsity in Deep Neural Networks
The State of Sparsity in Deep Neural Networks
Trevor Gale
Erich Elsen
Sara Hooker
163
762
0
25 Feb 2019
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context
Zihang Dai
Zhilin Yang
Yiming Yang
J. Carbonell
Quoc V. Le
Ruslan Salakhutdinov
VLM
260
3,745
0
09 Jan 2019
A Convergence Theory for Deep Learning via Over-Parameterization
A Convergence Theory for Deep Learning via Over-Parameterization
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao Song
AI4CEODL
266
1,469
0
09 Nov 2018
SNIP: Single-shot Network Pruning based on Connection Sensitivity
SNIP: Single-shot Network Pruning based on Connection Sensitivity
Namhoon Lee
Thalaiyasingam Ajanthan
Philip Torr
VLM
269
1,207
0
04 Oct 2018
The Convergence of Sparsified Gradient Methods
The Convergence of Sparsified Gradient Methods
Dan Alistarh
Torsten Hoefler
M. Johansson
Sarit Khirirat
Nikola Konstantinov
Cédric Renggli
169
494
0
27 Sep 2018
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle
Michael Carbin
263
3,485
0
09 Mar 2018
TVM: An Automated End-to-End Optimizing Compiler for Deep Learning
TVM: An Automated End-to-End Optimizing Compiler for Deep Learning
Tianqi Chen
T. Moreau
Ziheng Jiang
Lianmin Zheng
Eddie Q. Yan
...
Leyuan Wang
Yuwei Hu
Luis Ceze
Carlos Guestrin
Arvind Krishnamurthy
193
374
0
12 Feb 2018
Deep Rewiring: Training very sparse deep networks
Deep Rewiring: Training very sparse deep networks
G. Bellec
David Kappel
Wolfgang Maass
Robert Legenstein
BDL
164
279
0
14 Nov 2017
To prune, or not to prune: exploring the efficacy of pruning for model
  compression
To prune, or not to prune: exploring the efficacy of pruning for model compression
Michael Zhu
Suyog Gupta
197
1,281
0
05 Oct 2017
Scalable Training of Artificial Neural Networks with Adaptive Sparse
  Connectivity inspired by Network Science
Scalable Training of Artificial Neural Networks with Adaptive Sparse Connectivity inspired by Network Science
Decebal Constantin Mocanu
Elena Mocanu
Peter Stone
Phuong H. Nguyen
M. Gibescu
A. Liotta
178
634
0
15 Jul 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
786
132,363
0
12 Jun 2017
Learning to Prune Deep Neural Networks via Layer-wise Optimal Brain
  Surgeon
Learning to Prune Deep Neural Networks via Layer-wise Optimal Brain Surgeon
Xin Luna Dong
Shangyu Chen
Sinno Jialin Pan
183
506
0
22 May 2017
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
1.2K
20,892
0
17 Apr 2017
Variational Dropout Sparsifies Deep Neural Networks
Variational Dropout Sparsifies Deep Neural Networks
Dmitry Molchanov
Arsenii Ashukha
Dmitry Vetrov
BDL
150
831
0
19 Jan 2017
Understanding deep learning requires rethinking generalization
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
351
4,635
0
10 Nov 2016
Pointer Sentinel Mixture Models
Pointer Sentinel Mixture Models
Stephen Merity
Caiming Xiong
James Bradbury
R. Socher
RALM
341
2,898
0
26 Sep 2016
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark Schmidt
280
1,221
0
16 Aug 2016
Training Skinny Deep Neural Networks with Iterative Hard Thresholding
  Methods
Training Skinny Deep Neural Networks with Iterative Hard Thresholding Methods
Xiaojie Jin
Xiao-Tong Yuan
Jiashi Feng
Shuicheng Yan
396
78
0
19 Jul 2016
Wide Residual Networks
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
353
8,000
0
23 May 2016
Binarized Neural Networks
Itay Hubara
Daniel Soudry
Ran El-Yaniv
MQ
204
1,348
0
08 Feb 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,426
0
10 Dec 2015
Learning both Weights and Connections for Efficient Neural Networks
Learning both Weights and Connections for Efficient Neural Networks
Song Han
Jeff Pool
J. Tran
W. Dally
CVBM
313
6,700
0
08 Jun 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,312
0
22 Dec 2014
On Iterative Hard Thresholding Methods for High-dimensional M-Estimation
On Iterative Hard Thresholding Methods for High-dimensional M-Estimation
Prateek Jain
Ambuj Tewari
Purushottam Kar
163
232
0
20 Oct 2014
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLMObjD
1.7K
39,595
0
01 Sep 2014
Gradient Hard Thresholding Pursuit for Sparsity-Constrained Optimization
Gradient Hard Thresholding Pursuit for Sparsity-Constrained Optimization
Xiao-Tong Yuan
Ping Li
Tong Zhang
181
113
0
22 Nov 2013
1