ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.12228
  4. Cited By
groupShapley: Efficient prediction explanation with Shapley values for
  feature groups

groupShapley: Efficient prediction explanation with Shapley values for feature groups

23 June 2021
Martin Jullum
Annabelle Redelmeier
K. Aas
    TDI
    FAtt
ArXivPDFHTML

Papers citing "groupShapley: Efficient prediction explanation with Shapley values for feature groups"

9 / 9 papers shown
Title
Towards Budget-Friendly Model-Agnostic Explanation Generation for Large Language Models
Towards Budget-Friendly Model-Agnostic Explanation Generation for Large Language Models
Junhao Liu
Haonan Yu
Xin Zhang
LRM
14
0
0
18 May 2025
Group Shapley with Robust Significance Testing and Its Application to Bond Recovery Rate Prediction
Jingyi Wang
Ying Chen
Paolo Giudici
45
0
0
06 Jan 2025
Succinct Interaction-Aware Explanations
Succinct Interaction-Aware Explanations
Sascha Xu
Joscha Cuppers
Jilles Vreeken
FAtt
24
0
0
08 Feb 2024
Shapley Sets: Feature Attribution via Recursive Function Decomposition
Shapley Sets: Feature Attribution via Recursive Function Decomposition
Torty Sivill
Peter A. Flach
FAtt
TDI
11
1
0
04 Jul 2023
Do intermediate feature coalitions aid explainability of black-box
  models?
Do intermediate feature coalitions aid explainability of black-box models?
M. Patil
Kary Främling
19
0
0
21 Mar 2023
On marginal feature attributions of tree-based models
On marginal feature attributions of tree-based models
Khashayar Filom
A. Miroshnikov
Konstandinos Kotsiopoulos
Arjun Ravi Kannan
FAtt
22
3
0
16 Feb 2023
WindowSHAP: An Efficient Framework for Explaining Time-series
  Classifiers based on Shapley Values
WindowSHAP: An Efficient Framework for Explaining Time-series Classifiers based on Shapley Values
Amin Nayebi
Sindhu Tipirneni
Chandan K. Reddy
Brandon Foreman
V. Subbian
FAtt
AI4TS
21
19
0
11 Nov 2022
Using Shapley Values and Variational Autoencoders to Explain Predictive
  Models with Dependent Mixed Features
Using Shapley Values and Variational Autoencoders to Explain Predictive Models with Dependent Mixed Features
Lars Henry Berge Olsen
I. Glad
Martin Jullum
K. Aas
TDI
FAtt
32
17
0
26 Nov 2021
ranger: A Fast Implementation of Random Forests for High Dimensional
  Data in C++ and R
ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R
Marvin N. Wright
A. Ziegler
113
2,735
0
18 Aug 2015
1