ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.12144
  4. Cited By
NodePiece: Compositional and Parameter-Efficient Representations of
  Large Knowledge Graphs

NodePiece: Compositional and Parameter-Efficient Representations of Large Knowledge Graphs

23 June 2021
Mikhail Galkin
E. Denis
Jiapeng Wu
William L. Hamilton
    OCL
ArXivPDFHTML

Papers citing "NodePiece: Compositional and Parameter-Efficient Representations of Large Knowledge Graphs"

18 / 18 papers shown
Title
Predicting clinical outcomes from patient care pathways represented with temporal knowledge graphs
Predicting clinical outcomes from patient care pathways represented with temporal knowledge graphs
Jong Ho Jhee
Alberto Megina
Pacôme Constant Dit Beaufils
Matilde Karakachoff
Richard Redon
Alban Gaignard
Adrien Coulet
55
0
0
28 Feb 2025
PathE: Leveraging Entity-Agnostic Paths for Parameter-Efficient Knowledge Graph Embeddings
PathE: Leveraging Entity-Agnostic Paths for Parameter-Efficient Knowledge Graph Embeddings
Ioannis Reklos
Jacopo de Berardinis
Elena Simperl
Albert Meroño-Peñuela
156
0
0
31 Jan 2025
TWIG: Towards pre-hoc Hyperparameter Optimisation and Cross-Graph
  Generalisation via Simulated KGE Models
TWIG: Towards pre-hoc Hyperparameter Optimisation and Cross-Graph Generalisation via Simulated KGE Models
J. Sardina
John D. Kelleher
Declan O’Sullivan
18
0
0
08 Feb 2024
Random Entity Quantization for Parameter-Efficient Compositional
  Knowledge Graph Representation
Random Entity Quantization for Parameter-Efficient Compositional Knowledge Graph Representation
Jiaang Li
Quan Wang
Yi Liu
L. Zhang
Zhendong Mao
29
0
0
24 Oct 2023
Clinical Trial Recommendations Using Semantics-Based Inductive Inference
  and Knowledge Graph Embeddings
Clinical Trial Recommendations Using Semantics-Based Inductive Inference and Knowledge Graph Embeddings
M. Devarakonda
Smita Mohanty
Raja Rao Sunkishala
Nag Mallampalli
Xiong Liu
26
4
0
27 Sep 2023
Neural Graph Reasoning: Complex Logical Query Answering Meets Graph
  Databases
Neural Graph Reasoning: Complex Logical Query Answering Meets Graph Databases
Hongyu Ren
Mikhail Galkin
Michael Cochez
Zhaocheng Zhu
J. Leskovec
NAI
GNN
41
35
0
26 Mar 2023
From Wide to Deep: Dimension Lifting Network for Parameter-efficient
  Knowledge Graph Embedding
From Wide to Deep: Dimension Lifting Network for Parameter-efficient Knowledge Graph Embedding
Borui Cai
Yong Xiang
Longxiang Gao
Di Wu
Heng Zhang
Jiongdao Jin
Tom H. Luan
26
1
0
22 Mar 2023
Generalizing to Unseen Elements: A Survey on Knowledge Extrapolation for
  Knowledge Graphs
Generalizing to Unseen Elements: A Survey on Knowledge Extrapolation for Knowledge Graphs
Mingyang Chen
Wen Zhang
Yuxia Geng
Zezhong Xu
Jeff Z. Pan
Hua-zeng Chen
24
18
0
03 Feb 2023
A Survey of Knowledge Graph Reasoning on Graph Types: Static, Dynamic,
  and Multimodal
A Survey of Knowledge Graph Reasoning on Graph Types: Static, Dynamic, and Multimodal
K. Liang
Lingyuan Meng
Meng Liu
Yue Liu
Wenxuan Tu
Siwei Wang
Sihang Zhou
Xinwang Liu
Fu Sun
LRM
26
108
0
12 Dec 2022
StarGraph: Knowledge Representation Learning based on Incomplete Two-hop
  Subgraph
StarGraph: Knowledge Representation Learning based on Incomplete Two-hop Subgraph
Hongzhu Li
Xiang Gao
Linhui Feng
Yafeng Deng
Yuhui Yin
16
2
0
27 May 2022
Relphormer: Relational Graph Transformer for Knowledge Graph
  Representations
Relphormer: Relational Graph Transformer for Knowledge Graph Representations
Zhen Bi
Shuyang Cheng
Jing Chen
Xiaozhuan Liang
Feiyu Xiong
Ningyu Zhang
34
37
0
22 May 2022
R-GCN: The R Could Stand for Random
R-GCN: The R Could Stand for Random
Vic Degraeve
Gilles Vandewiele
F. Ongenae
Sofie Van Hoecke
GNN
29
13
0
04 Mar 2022
An Open Challenge for Inductive Link Prediction on Knowledge Graphs
An Open Challenge for Inductive Link Prediction on Knowledge Graphs
Mikhail Galkin
M. Berrendorf
Charles Tapley Hoyt
AI4CE
25
22
0
03 Mar 2022
InterHT: Knowledge Graph Embeddings by Interaction between Head and Tail
  Entities
InterHT: Knowledge Graph Embeddings by Interaction between Head and Tail Entities
Baoxin Wang
Qingye Meng
Ziyue Wang
Honghong Zhao
Dayong Wu
Wanxiang Che
Shijin Wang
Zhigang Chen
Cong Liu
35
11
0
10 Feb 2022
PyKEEN 1.0: A Python Library for Training and Evaluating Knowledge Graph
  Embeddings
PyKEEN 1.0: A Python Library for Training and Evaluating Knowledge Graph Embeddings
Mehdi Ali
M. Berrendorf
Charles Tapley Hoyt
Laurent Vermue
Sahand Sharifzadeh
Volker Tresp
Jens Lehmann
39
142
0
28 Jul 2020
Pre-trained Models for Natural Language Processing: A Survey
Pre-trained Models for Natural Language Processing: A Survey
Xipeng Qiu
Tianxiang Sun
Yige Xu
Yunfan Shao
Ning Dai
Xuanjing Huang
LM&MA
VLM
243
1,452
0
18 Mar 2020
A Survey on Knowledge Graphs: Representation, Acquisition and
  Applications
A Survey on Knowledge Graphs: Representation, Acquisition and Applications
Shaoxiong Ji
Shirui Pan
Erik Cambria
Pekka Marttinen
Philip S. Yu
181
1,940
0
02 Feb 2020
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
246
4,489
0
23 Jan 2020
1