ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.11930
  4. Cited By
On the importance of cross-task features for class-incremental learning

On the importance of cross-task features for class-incremental learning

22 June 2021
Albin Soutif--Cormerais
Marc Masana
Joost van de Weijer
Bartlomiej Twardowski
    CLL
ArXivPDFHTML

Papers citing "On the importance of cross-task features for class-incremental learning"

4 / 4 papers shown
Title
Autoencoder-Based Hybrid Replay for Class-Incremental Learning
Autoencoder-Based Hybrid Replay for Class-Incremental Learning
Milad Khademi Nori
Il Kim
Guanghui Wang
CLL
50
0
0
09 May 2025
The impact of model size on catastrophic forgetting in Online Continual
  Learning
The impact of model size on catastrophic forgetting in Online Continual Learning
Eunhae Lee
CLL
41
0
0
28 Jun 2024
A Comprehensive Empirical Evaluation on Online Continual Learning
A Comprehensive Empirical Evaluation on Online Continual Learning
Albin Soutif--Cormerais
Antonio Carta
Andrea Cossu
J. Hurtado
Hamed Hemati
Vincenzo Lomonaco
Joost van de Weijer
CLL
31
20
0
20 Aug 2023
Exemplar-free Continual Learning of Vision Transformers via Gated
  Class-Attention and Cascaded Feature Drift Compensation
Exemplar-free Continual Learning of Vision Transformers via Gated Class-Attention and Cascaded Feature Drift Compensation
Marco Cotogni
Fei Yang
C. Cusano
Andrew D. Bagdanov
Joost van de Weijer
CLL
30
0
0
22 Nov 2022
1