ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.11849
  4. Cited By
Algorithmic Recourse in Partially and Fully Confounded Settings Through
  Bounding Counterfactual Effects

Algorithmic Recourse in Partially and Fully Confounded Settings Through Bounding Counterfactual Effects

22 June 2021
Julius von Kügelgen
N. Agarwal
Jakob Zeitler
Afsaneh Mastouri
Bernhard Schölkopf
    CML
ArXiv (abs)PDFHTML

Papers citing "Algorithmic Recourse in Partially and Fully Confounded Settings Through Bounding Counterfactual Effects"

12 / 12 papers shown
Title
Partial Identifiability in Discrete Data With Measurement Error
Partial Identifiability in Discrete Data With Measurement Error
N. Finkelstein
R. Adams
Suchi Saria
I. Shpitser
62
11
0
23 Dec 2020
On the Fairness of Causal Algorithmic Recourse
On the Fairness of Causal Algorithmic Recourse
Julius von Kügelgen
Amir-Hossein Karimi
Umang Bhatt
Isabel Valera
Adrian Weller
Bernhard Schölkopf
FaML
111
85
0
13 Oct 2020
A survey of algorithmic recourse: definitions, formulations, solutions,
  and prospects
A survey of algorithmic recourse: definitions, formulations, solutions, and prospects
Amir-Hossein Karimi
Gilles Barthe
Bernhard Schölkopf
Isabel Valera
FaML
68
172
0
08 Oct 2020
Algorithmic recourse under imperfect causal knowledge: a probabilistic
  approach
Algorithmic recourse under imperfect causal knowledge: a probabilistic approach
Amir-Hossein Karimi
Julius von Kügelgen
Bernhard Schölkopf
Isabel Valera
CML
99
180
0
11 Jun 2020
Algorithmic Recourse: from Counterfactual Explanations to Interventions
Algorithmic Recourse: from Counterfactual Explanations to Interventions
Amir-Hossein Karimi
Bernhard Schölkopf
Isabel Valera
CML
51
340
0
14 Feb 2020
Preserving Causal Constraints in Counterfactual Explanations for Machine
  Learning Classifiers
Preserving Causal Constraints in Counterfactual Explanations for Machine Learning Classifiers
Divyat Mahajan
Chenhao Tan
Amit Sharma
OODCML
98
206
0
06 Dec 2019
PC-Fairness: A Unified Framework for Measuring Causality-based Fairness
PC-Fairness: A Unified Framework for Measuring Causality-based Fairness
Yongkai Wu
Lu Zhang
Xintao Wu
Hanghang Tong
FaML
107
118
0
20 Oct 2019
Equalizing Recourse across Groups
Equalizing Recourse across Groups
Vivek Gupta
Pegah Nokhiz
Chitradeep Dutta Roy
Suresh Venkatasubramanian
FaML
40
70
0
07 Sep 2019
Actionable Recourse in Linear Classification
Actionable Recourse in Linear Classification
Berk Ustun
Alexander Spangher
Yang Liu
FaML
117
549
0
18 Sep 2018
Counterfactual Explanations without Opening the Black Box: Automated
  Decisions and the GDPR
Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR
Sandra Wachter
Brent Mittelstadt
Chris Russell
MLAU
112
2,354
0
01 Nov 2017
Fair prediction with disparate impact: A study of bias in recidivism
  prediction instruments
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
300
2,114
0
24 Oct 2016
Counterfactual Probabilities: Computational Methods, Bounds and
  Applications
Counterfactual Probabilities: Computational Methods, Bounds and Applications
Alexander Balke
Judea Pearl
69
255
0
27 Feb 2013
1