ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.10272
  4. Cited By
Riemannian Convex Potential Maps

Riemannian Convex Potential Maps

18 June 2021
Samuel N. Cohen
Brandon Amos
Y. Lipman
ArXivPDFHTML

Papers citing "Riemannian Convex Potential Maps"

11 / 11 papers shown
Title
On a Neural Implementation of Brenier's Polar Factorization
On a Neural Implementation of Brenier's Polar Factorization
Nina Vesseron
Marco Cuturi
39
2
0
05 Mar 2024
The Monge Gap: A Regularizer to Learn All Transport Maps
The Monge Gap: A Regularizer to Learn All Transport Maps
Théo Uscidda
Marco Cuturi
OT
47
26
0
09 Feb 2023
Rigid Body Flows for Sampling Molecular Crystal Structures
Rigid Body Flows for Sampling Molecular Crystal Structures
Jonas Köhler
Michele Invernizzi
P. D. Haan
Frank Noé
AI4CE
32
27
0
26 Jan 2023
Conformal Mirror Descent with Logarithmic Divergences
Conformal Mirror Descent with Logarithmic Divergences
Amanjit Kainth
Ting-Kam Leonard Wong
Frank Rudzicz
18
4
0
07 Sep 2022
Spherical Sliced-Wasserstein
Spherical Sliced-Wasserstein
Clément Bonet
P. Berg
Nicolas Courty
Françcois Septier
Lucas Drumetz
Minh Pham
24
27
0
17 Jun 2022
Symmetry-Based Representations for Artificial and Biological General
  Intelligence
Symmetry-Based Representations for Artificial and Biological General Intelligence
I. Higgins
S. Racanière
Danilo Jimenez Rezende
AI4CE
24
44
0
17 Mar 2022
Tutorial on amortized optimization
Tutorial on amortized optimization
Brandon Amos
OffRL
75
43
0
01 Feb 2022
Convex Potential Flows: Universal Probability Distributions with Optimal
  Transport and Convex Optimization
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
112
95
0
10 Dec 2020
Wasserstein-2 Generative Networks
Wasserstein-2 Generative Networks
Alexander Korotin
Vage Egiazarian
Arip Asadulaev
Alexander Safin
E. Burnaev
GAN
122
100
0
28 Sep 2019
Soft-DTW: a Differentiable Loss Function for Time-Series
Soft-DTW: a Differentiable Loss Function for Time-Series
Marco Cuturi
Mathieu Blondel
AI4TS
141
611
0
05 Mar 2017
Input Convex Neural Networks
Input Convex Neural Networks
Brandon Amos
Lei Xu
J. Zico Kolter
175
597
0
22 Sep 2016
1