ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.10207
  4. Cited By
Distributed Deep Learning in Open Collaborations

Distributed Deep Learning in Open Collaborations

18 June 2021
Michael Diskin
Alexey Bukhtiyarov
Max Ryabinin
Lucile Saulnier
Quentin Lhoest
A. Sinitsin
Dmitry Popov
Dmitry Pyrkin
M. Kashirin
Alexander Borzunov
Albert Villanova del Moral
Denis Mazur
Ilia Kobelev
Yacine Jernite
Thomas Wolf
Gennady Pekhimenko
    FedML
ArXivPDFHTML

Papers citing "Distributed Deep Learning in Open Collaborations"

14 / 14 papers shown
Title
Findings of the BabyLM Challenge: Sample-Efficient Pretraining on Developmentally Plausible Corpora
Findings of the BabyLM Challenge: Sample-Efficient Pretraining on Developmentally Plausible Corpora
Alex Warstadt
Aaron Mueller
Leshem Choshen
E. Wilcox
Chengxu Zhuang
...
Rafael Mosquera
Bhargavi Paranjape
Adina Williams
Tal Linzen
Ryan Cotterell
38
108
0
10 Apr 2025
TituLLMs: A Family of Bangla LLMs with Comprehensive Benchmarking
TituLLMs: A Family of Bangla LLMs with Comprehensive Benchmarking
Shahriar Kabir Nahin
R. N. Nandi
Sagor Sarker
Quazi Sarwar Muhtaseem
Md. Kowsher
Apu Chandraw Shill
Md Ibrahim
Mehadi Hasan Menon
Tareq Al Muntasir
Firoj Alam
68
0
0
24 Feb 2025
No Need to Talk: Asynchronous Mixture of Language Models
No Need to Talk: Asynchronous Mixture of Language Models
Anastasiia Filippova
Angelos Katharopoulos
David Grangier
Ronan Collobert
MoE
39
0
0
04 Oct 2024
LowResource at BLP-2023 Task 2: Leveraging BanglaBert for Low Resource
  Sentiment Analysis of Bangla Language
LowResource at BLP-2023 Task 2: Leveraging BanglaBert for Low Resource Sentiment Analysis of Bangla Language
Aunabil Chakma
Masum Hasan
39
3
0
21 Nov 2023
Communication Compression for Byzantine Robust Learning: New Efficient
  Algorithms and Improved Rates
Communication Compression for Byzantine Robust Learning: New Efficient Algorithms and Improved Rates
Ahmad Rammal
Kaja Gruntkowska
Nikita Fedin
Eduard A. Gorbunov
Peter Richtárik
45
5
0
15 Oct 2023
A Survey From Distributed Machine Learning to Distributed Deep Learning
A Survey From Distributed Machine Learning to Distributed Deep Learning
Mohammad Dehghani
Zahra Yazdanparast
20
0
0
11 Jul 2023
SWARM Parallelism: Training Large Models Can Be Surprisingly
  Communication-Efficient
SWARM Parallelism: Training Large Models Can Be Surprisingly Communication-Efficient
Max Ryabinin
Tim Dettmers
Michael Diskin
Alexander Borzunov
MoE
30
31
0
27 Jan 2023
Decentralized Training of Foundation Models in Heterogeneous
  Environments
Decentralized Training of Foundation Models in Heterogeneous Environments
Binhang Yuan
Yongjun He
Jared Davis
Tianyi Zhang
Tri Dao
Beidi Chen
Percy Liang
Christopher Ré
Ce Zhang
25
90
0
02 Jun 2022
Can Foundation Models Help Us Achieve Perfect Secrecy?
Can Foundation Models Help Us Achieve Perfect Secrecy?
Simran Arora
Christopher Ré
FedML
24
6
0
27 May 2022
One Country, 700+ Languages: NLP Challenges for Underrepresented
  Languages and Dialects in Indonesia
One Country, 700+ Languages: NLP Challenges for Underrepresented Languages and Dialects in Indonesia
Alham Fikri Aji
Genta Indra Winata
Fajri Koto
Samuel Cahyawijaya
Ade Romadhony
...
David Moeljadi
Radityo Eko Prasojo
Timothy Baldwin
Jey Han Lau
Sebastian Ruder
40
99
0
24 Mar 2022
Datasets: A Community Library for Natural Language Processing
Datasets: A Community Library for Natural Language Processing
Quentin Lhoest
Albert Villanova del Moral
Yacine Jernite
A. Thakur
Patrick von Platen
...
Thibault Goehringer
Victor Mustar
François Lagunas
Alexander M. Rush
Thomas Wolf
30
580
0
07 Sep 2021
ZeRO-Offload: Democratizing Billion-Scale Model Training
ZeRO-Offload: Democratizing Billion-Scale Model Training
Jie Ren
Samyam Rajbhandari
Reza Yazdani Aminabadi
Olatunji Ruwase
Shuangyang Yang
Minjia Zhang
Dong Li
Yuxiong He
MoE
177
414
0
18 Jan 2021
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
246
4,489
0
23 Jan 2020
Megatron-LM: Training Multi-Billion Parameter Language Models Using
  Model Parallelism
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
M. Shoeybi
M. Patwary
Raul Puri
P. LeGresley
Jared Casper
Bryan Catanzaro
MoE
245
1,821
0
17 Sep 2019
1