Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.09992
Cited By
Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis
18 June 2021
Martin Pawelczyk
Chirag Agarwal
Shalmali Joshi
Sohini Upadhyay
Himabindu Lakkaraju
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis"
37 / 37 papers shown
Title
Learning-Augmented Robust Algorithmic Recourse
Kshitij Kayastha
Vasilis Gkatzelis
Shahin Jabbari
34
0
0
02 Oct 2024
CF-OPT: Counterfactual Explanations for Structured Prediction
Germain Vivier--Ardisson
Alexandre Forel
Axel Parmentier
Thibaut Vidal
OffRL
CML
BDL
35
1
0
28 May 2024
Model-Based Counterfactual Explanations Incorporating Feature Space Attributes for Tabular Data
Yuta Sumiya
Hayaru Shouno
AAML
OOD
30
0
0
20 Apr 2024
Utilizing Adversarial Examples for Bias Mitigation and Accuracy Enhancement
Pushkar Shukla
Dhruv Srikanth
Lee Cohen
Matthew A. Turk
AAML
38
0
0
18 Apr 2024
Do Counterfactual Examples Complicate Adversarial Training?
Eric C. Yeats
Cameron Darwin
Eduardo Ortega
Frank Liu
Hai Li
DiffM
35
0
0
16 Apr 2024
Towards Non-Adversarial Algorithmic Recourse
Tobias Leemann
Martin Pawelczyk
Bardh Prenkaj
Gjergji Kasneci
AAML
28
1
0
15 Mar 2024
Cost-Adaptive Recourse Recommendation by Adaptive Preference Elicitation
Duy Nguyen
Bao Nguyen
Viet Anh Nguyen
18
0
0
23 Feb 2024
Robust Counterfactual Explanations in Machine Learning: A Survey
Junqi Jiang
Francesco Leofante
Antonio Rago
Francesca Toni
OffRL
CML
25
10
0
02 Feb 2024
ABIGX: A Unified Framework for eXplainable Fault Detection and Classification
Yue Zhuo
Jinchuan Qian
Zhihuan Song
Zhiqiang Ge
14
1
0
09 Nov 2023
Faithful and Robust Local Interpretability for Textual Predictions
Gianluigi Lopardo
F. Precioso
Damien Garreau
OOD
26
4
0
30 Oct 2023
Adversarial Machine Learning for Social Good: Reframing the Adversary as an Ally
Shawqi Al-Maliki
Adnan Qayyum
Hassan Ali
M. Abdallah
Junaid Qadir
D. Hoang
Dusit Niyato
Ala I. Al-Fuqaha
AAML
26
3
0
05 Oct 2023
On the Trade-offs between Adversarial Robustness and Actionable Explanations
Satyapriya Krishna
Chirag Agarwal
Himabindu Lakkaraju
AAML
36
0
0
28 Sep 2023
T-COL: Generating Counterfactual Explanations for General User Preferences on Variable Machine Learning Systems
Yiming Li
Daling Wang
Wenfang Wu
Shi Feng
Yifei Zhang
CML
40
1
0
28 Sep 2023
Adaptive Adversarial Training Does Not Increase Recourse Costs
Ian Hardy
Jayanth Yetukuri
Yang Liu
AAML
11
1
0
05 Sep 2023
Towards User Guided Actionable Recourse
Jayanth Yetukuri
Ian Hardy
Yang Liu
13
2
0
05 Sep 2023
On Minimizing the Impact of Dataset Shifts on Actionable Explanations
Anna P. Meyer
Dan Ley
Suraj Srinivas
Himabindu Lakkaraju
FAtt
34
6
0
11 Jun 2023
The Risks of Recourse in Binary Classification
H. Fokkema
Damien Garreau
T. Erven
FaML
16
4
0
01 Jun 2023
Unveiling the Potential of Counterfactuals Explanations in Employability
Raphael Mazzine Barbosa de Oliveira
S. Goethals
Dieter Brughmans
David Martens
19
2
0
17 May 2023
Algorithmic Recourse with Missing Values
Kentaro Kanamori
Takuya Takagi
Ken Kobayashi
Yuichi Ike
28
2
0
28 Apr 2023
Adversarial Counterfactual Visual Explanations
Guillaume Jeanneret
Loïc Simon
F. Jurie
DiffM
41
27
0
17 Mar 2023
Towards Bridging the Gaps between the Right to Explanation and the Right to be Forgotten
Satyapriya Krishna
Jiaqi Ma
Himabindu Lakkaraju
24
13
0
08 Feb 2023
Robustness Implies Fairness in Causal Algorithmic Recourse
A. Ehyaei
Amir-Hossein Karimi
Bernhard Schölkopf
S. Maghsudi
FaML
28
12
0
07 Feb 2023
On the Privacy Risks of Algorithmic Recourse
Martin Pawelczyk
Himabindu Lakkaraju
Seth Neel
19
31
0
10 Nov 2022
Decomposing Counterfactual Explanations for Consequential Decision Making
Martin Pawelczyk
Lea Tiyavorabun
Gjergji Kasneci
CML
14
1
0
03 Nov 2022
A.I. Robustness: a Human-Centered Perspective on Technological Challenges and Opportunities
Andrea Tocchetti
Lorenzo Corti
Agathe Balayn
Mireia Yurrita
Philip Lippmann
Marco Brambilla
Jie-jin Yang
19
10
0
17 Oct 2022
Formalising the Robustness of Counterfactual Explanations for Neural Networks
Junqi Jiang
Francesco Leofante
Antonio Rago
Francesca Toni
AAML
15
26
0
31 Aug 2022
On the Trade-Off between Actionable Explanations and the Right to be Forgotten
Martin Pawelczyk
Tobias Leemann
Asia J. Biega
Gjergji Kasneci
FaML
MU
24
23
0
30 Aug 2022
The Manifold Hypothesis for Gradient-Based Explanations
Sebastian Bordt
Uddeshya Upadhyay
Zeynep Akata
U. V. Luxburg
FAtt
AAML
18
12
0
15 Jun 2022
Don't Explain Noise: Robust Counterfactuals for Randomized Ensembles
Alexandre Forel
Axel Parmentier
Thibaut Vidal
22
1
0
27 May 2022
Diffusion Models for Counterfactual Explanations
Guillaume Jeanneret
Loïc Simon
F. Jurie
DiffM
32
55
0
29 Mar 2022
Probabilistically Robust Recourse: Navigating the Trade-offs between Costs and Robustness in Algorithmic Recourse
Martin Pawelczyk
Teresa Datta
Johannes van-den-Heuvel
Gjergji Kasneci
Himabindu Lakkaraju
19
38
0
13 Mar 2022
On the Robustness of Sparse Counterfactual Explanations to Adverse Perturbations
M. Virgolin
Saverio Fracaros
CML
26
36
0
22 Jan 2022
On the Adversarial Robustness of Causal Algorithmic Recourse
Ricardo Dominguez-Olmedo
Amir-Hossein Karimi
Bernhard Schölkopf
46
63
0
21 Dec 2021
Estimating Categorical Counterfactuals via Deep Twin Networks
Athanasios Vlontzos
Bernhard Kainz
Ciarán M. Gilligan-Lee
OOD
CML
BDL
26
16
0
04 Sep 2021
Adversarial Attacks for Tabular Data: Application to Fraud Detection and Imbalanced Data
F. Cartella
Orlando Anunciação
Yuki Funabiki
D. Yamaguchi
Toru Akishita
Olivier Elshocht
AAML
61
71
0
20 Jan 2021
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan E. Hines
John P. Dickerson
Chirag Shah
CML
24
162
0
20 Oct 2020
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
281
5,835
0
08 Jul 2016
1