Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.09947
Cited By
Indicators of Attack Failure: Debugging and Improving Optimization of Adversarial Examples
18 June 2021
Maura Pintor
Luca Demetrio
Angelo Sotgiu
Ambra Demontis
Nicholas Carlini
Battista Biggio
Fabio Roli
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Indicators of Attack Failure: Debugging and Improving Optimization of Adversarial Examples"
8 / 8 papers shown
Title
AttackBench: Evaluating Gradient-based Attacks for Adversarial Examples
Antonio Emanuele Cinà
Jérôme Rony
Maura Pintor
Luca Demetrio
Ambra Demontis
Battista Biggio
Ismail Ben Ayed
Fabio Roli
ELM
AAML
SILM
44
8
0
30 Apr 2024
The Adaptive Arms Race: Redefining Robustness in AI Security
Ilias Tsingenopoulos
Vera Rimmer
Davy Preuveneers
Fabio Pierazzi
Lorenzo Cavallaro
Wouter Joosen
AAML
72
0
0
20 Dec 2023
"Real Attackers Don't Compute Gradients": Bridging the Gap Between Adversarial ML Research and Practice
Giovanni Apruzzese
Hyrum S. Anderson
Savino Dambra
D. Freeman
Fabio Pierazzi
Kevin A. Roundy
AAML
31
75
0
29 Dec 2022
Increasing Confidence in Adversarial Robustness Evaluations
Roland S. Zimmermann
Wieland Brendel
Florian Tramèr
Nicholas Carlini
AAML
36
16
0
28 Jun 2022
Evaluating the Adversarial Robustness of Adaptive Test-time Defenses
Francesco Croce
Sven Gowal
T. Brunner
Evan Shelhamer
Matthias Hein
A. Cemgil
TTA
AAML
181
67
0
28 Feb 2022
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
234
678
0
19 Oct 2020
A New Defense Against Adversarial Images: Turning a Weakness into a Strength
Tao Yu
Shengyuan Hu
Chuan Guo
Wei-Lun Chao
Kilian Q. Weinberger
AAML
58
101
0
16 Oct 2019
Shield: Fast, Practical Defense and Vaccination for Deep Learning using JPEG Compression
Nilaksh Das
Madhuri Shanbhogue
Shang-Tse Chen
Fred Hohman
Siwei Li
Li-Wei Chen
Michael E. Kounavis
Duen Horng Chau
FedML
AAML
43
224
0
19 Feb 2018
1