ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.09757
  4. Cited By
CIRA Guide to Custom Loss Functions for Neural Networks in Environmental
  Sciences -- Version 1

CIRA Guide to Custom Loss Functions for Neural Networks in Environmental Sciences -- Version 1

17 June 2021
I. Ebert‐Uphoff
Ryan Lagerquist
Kyle Hilburn
Yoonjin Lee
Katherine Haynes
Jason Stock
C. Kumler
J. Stewart
ArXivPDFHTML

Papers citing "CIRA Guide to Custom Loss Functions for Neural Networks in Environmental Sciences -- Version 1"

8 / 8 papers shown
Title
Custom Loss Functions in Fuel Moisture Modeling
Custom Loss Functions in Fuel Moisture Modeling
Jonathon Hirschi
26
0
0
03 Jan 2025
Kilometer-Scale Convection Allowing Model Emulation using Generative
  Diffusion Modeling
Kilometer-Scale Convection Allowing Model Emulation using Generative Diffusion Modeling
Jaideep Pathak
Y. Cohen
Piyush Garg
Peter Harrington
Noah D. Brenowitz
...
Morteza Mardani
Arash Vahdat
Shaoming Xu
K. Kashinath
Michael Pritchard
DiffM
AI4Cl
37
8
0
20 Aug 2024
Machine Learning Estimation of Maximum Vertical Velocity from Radar
Machine Learning Estimation of Maximum Vertical Velocity from Radar
Randy J. Chase
Amy McGovern
Cameron Homeyer
Peter Marinescu
Corey K. Potvin
17
0
0
13 Oct 2023
Advancing Parsimonious Deep Learning Weather Prediction using the
  HEALPix Mesh
Advancing Parsimonious Deep Learning Weather Prediction using the HEALPix Mesh
Matthias Karlbauer
Nathaniel Cresswell-Clay
Dale Durran
Raul A Moreno
Thorsten Kurth
Boris Bonev
Noah D. Brenowitz
Martin Volker Butz
MDE
28
20
0
11 Sep 2023
Physics-constrained deep learning postprocessing of temperature and
  humidity
Physics-constrained deep learning postprocessing of temperature and humidity
Francesco Zanetta
D. Nerini
Tom Beucler
M. Liniger
AI4CE
13
5
0
07 Dec 2022
Increasing the accuracy and resolution of precipitation forecasts using
  deep generative models
Increasing the accuracy and resolution of precipitation forecasts using deep generative models
Ilan Price
S. Rasp
AI4Cl
39
50
0
23 Mar 2022
Can we integrate spatial verification methods into neural-network loss
  functions for atmospheric science?
Can we integrate spatial verification methods into neural-network loss functions for atmospheric science?
Ryan Lagerquist
I. Ebert‐Uphoff
40
11
0
21 Mar 2022
Integrating Scientific Knowledge with Machine Learning for Engineering
  and Environmental Systems
Integrating Scientific Knowledge with Machine Learning for Engineering and Environmental Systems
J. Willard
X. Jia
Shaoming Xu
M. Steinbach
Vipin Kumar
AI4CE
91
387
0
10 Mar 2020
1