ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.09680
  4. Cited By
Accuracy, Interpretability, and Differential Privacy via Explainable
  Boosting

Accuracy, Interpretability, and Differential Privacy via Explainable Boosting

17 June 2021
Harsha Nori
R. Caruana
Zhiqi Bu
J. Shen
Janardhan Kulkarni
ArXivPDFHTML

Papers citing "Accuracy, Interpretability, and Differential Privacy via Explainable Boosting"

21 / 21 papers shown
Title
Privacy Risks and Preservation Methods in Explainable Artificial Intelligence: A Scoping Review
Privacy Risks and Preservation Methods in Explainable Artificial Intelligence: A Scoping Review
Sonal Allana
Mohan Kankanhalli
Rozita Dara
32
0
0
05 May 2025
GL-ICNN: An End-To-End Interpretable Convolutional Neural Network for the Diagnosis and Prediction of Alzheimer's Disease
GL-ICNN: An End-To-End Interpretable Convolutional Neural Network for the Diagnosis and Prediction of Alzheimer's Disease
Wenjie Kang
L. Jiskoot
Peter De Deyn
G. Biessels
Huiberdina Koek
...
H. Middelkoop
W. M. van der Flier
Willemijn J. Jansen
S. Klein
Esther E. Bron
29
0
0
20 Jan 2025
Quantum Gradient Class Activation Map for Model Interpretability
Quantum Gradient Class Activation Map for Model Interpretability
Hsin-Yi Lin
Huan-Hsin Tseng
Samuel Yen-Chi Chen
Shinjae Yoo
FAtt
31
5
0
12 Aug 2024
Differential Privacy for Anomaly Detection: Analyzing the Trade-off
  Between Privacy and Explainability
Differential Privacy for Anomaly Detection: Analyzing the Trade-off Between Privacy and Explainability
Fatima Ezzeddine
Mirna Saad
Omran Ayoub
Davide Andreoletti
M. Gjoreski
Ihab Sbeity
Marc Langheinrich
Silvia Giordano
18
2
0
09 Apr 2024
Automation of Quantum Dot Measurement Analysis via Explainable Machine Learning
Automation of Quantum Dot Measurement Analysis via Explainable Machine Learning
Daniel Schug
Tyler J. Kovach
M. A. Wolfe
Jared Benson
Sanghyeok Park
J. Dodson
J. Corrigan
M. A. Eriksson
Justyna P. Zwolak
18
1
0
21 Feb 2024
The Computational Complexity of Concise Hypersphere Classification
The Computational Complexity of Concise Hypersphere Classification
E. Eiben
R. Ganian
Iyad A. Kanj
S. Ordyniak
Stefan Szeider
37
1
0
12 Dec 2023
Classification with Partially Private Features
Classification with Partially Private Features
Zeyu Shen
A. Krishnaswamy
Janardhan Kulkarni
Kamesh Munagala
31
4
0
11 Dec 2023
SoK: Unintended Interactions among Machine Learning Defenses and Risks
SoK: Unintended Interactions among Machine Learning Defenses and Risks
Vasisht Duddu
S. Szyller
Nadarajah Asokan
AAML
47
2
0
07 Dec 2023
Interpretable Survival Analysis for Heart Failure Risk Prediction
Interpretable Survival Analysis for Heart Failure Risk Prediction
Mike Van Ness
Tomas M. Bosschieter
Natasha Din
Andrew P Ambrosy
Alexander Sandhu
Madeleine Udell
17
4
0
24 Oct 2023
Causal Inference with Differentially Private (Clustered) Outcomes
Causal Inference with Differentially Private (Clustered) Outcomes
Adel Javanmard
Vahab Mirrokni
Jean Pouget-Abadie
27
2
0
02 Aug 2023
An explainable model to support the decision about the therapy protocol
  for AML
An explainable model to support the decision about the therapy protocol for AML
J. Almeida
Giovanna A. Castro
J. Machado-Neto
Tiago A. Almeida
6
1
0
05 Jul 2023
Improved Differentially Private Regression via Gradient Boosting
Improved Differentially Private Regression via Gradient Boosting
Shuai Tang
Sergul Aydore
Michael Kearns
Saeyoung Rho
Aaron Roth
Yichen Wang
Yu-Xiang Wang
Zhiwei Steven Wu
FedML
32
4
0
06 Mar 2023
Smoothly Giving up: Robustness for Simple Models
Smoothly Giving up: Robustness for Simple Models
Tyler Sypherd
Nathan Stromberg
Richard Nock
Visar Berisha
Lalitha Sankar
18
1
0
17 Feb 2023
Estimate Deformation Capacity of Non-Ductile RC Shear Walls using
  Explainable Boosting Machine
Estimate Deformation Capacity of Non-Ductile RC Shear Walls using Explainable Boosting Machine
Z. Deger
Gülsen Taskin Kaya
J. Wallace
11
3
0
11 Jan 2023
Differentially Private Optimizers Can Learn Adversarially Robust Models
Differentially Private Optimizers Can Learn Adversarially Robust Models
Yuan Zhang
Zhiqi Bu
16
3
0
16 Nov 2022
Federated Boosted Decision Trees with Differential Privacy
Federated Boosted Decision Trees with Differential Privacy
Samuel Maddock
Graham Cormode
Tianhao Wang
Carsten Maple
S. Jha
FedML
21
29
0
06 Oct 2022
TimberTrek: Exploring and Curating Sparse Decision Trees with
  Interactive Visualization
TimberTrek: Exploring and Curating Sparse Decision Trees with Interactive Visualization
Zijie J. Wang
Chudi Zhong
Rui Xin
Takuya Takagi
Zhi Chen
Duen Horng Chau
Cynthia Rudin
Margo Seltzer
33
14
0
19 Sep 2022
Spending Privacy Budget Fairly and Wisely
Spending Privacy Budget Fairly and Wisely
Lucas Rosenblatt
Joshua Allen
Julia Stoyanovich
29
4
0
27 Apr 2022
Differentially Private Estimation of Heterogeneous Causal Effects
Differentially Private Estimation of Heterogeneous Causal Effects
Fengshi Niu
Harsha Nori
B. Quistorff
R. Caruana
Donald Ngwe
A. Kannan
CML
17
13
0
22 Feb 2022
Attention-like feature explanation for tabular data
Attention-like feature explanation for tabular data
A. Konstantinov
Lev V. Utkin
FAtt
21
5
0
10 Aug 2021
In Pursuit of Interpretable, Fair and Accurate Machine Learning for
  Criminal Recidivism Prediction
In Pursuit of Interpretable, Fair and Accurate Machine Learning for Criminal Recidivism Prediction
Caroline Linjun Wang
Bin Han
Bhrij Patel
Cynthia Rudin
FaML
HAI
59
84
0
08 May 2020
1