Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.08895
Cited By
v1
v2
v3 (latest)
Masked Training of Neural Networks with Partial Gradients
16 June 2021
Amirkeivan Mohtashami
Martin Jaggi
Sebastian U. Stich
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Masked Training of Neural Networks with Partial Gradients"
21 / 21 papers shown
Title
Delayed Random Partial Gradient Averaging for Federated Learning
Xinyi Hu
FedML
104
0
0
31 Dec 2024
Characterising Bias in Compressed Models
Sara Hooker
Nyalleng Moorosi
Gregory Clark
Samy Bengio
Emily L. Denton
70
185
0
06 Oct 2020
Dynamic Sparsity Neural Networks for Automatic Speech Recognition
Zhaofeng Wu
Ding Zhao
Qiao Liang
Jiahui Yu
Anmol Gulati
Ruoming Pang
47
41
0
16 May 2020
BigNAS: Scaling Up Neural Architecture Search with Big Single-Stage Models
Jiahui Yu
Pengchong Jin
Hanxiao Liu
Gabriel Bender
Pieter-Jan Kindermans
Mingxing Tan
Thomas Huang
Xiaodan Song
Ruoming Pang
Quoc V. Le
84
304
0
24 Mar 2020
Almost Sure Convergence of Dropout Algorithms for Neural Networks
Albert Senen-Cerda
J. Sanders
46
8
0
06 Feb 2020
Linear Mode Connectivity and the Lottery Ticket Hypothesis
Jonathan Frankle
Gintare Karolina Dziugaite
Daniel M. Roy
Michael Carbin
MoMe
159
628
0
11 Dec 2019
Distributed Learning of Deep Neural Networks using Independent Subnet Training
John Shelton Hyatt
Cameron R. Wolfe
Michael Lee
Yuxin Tang
Anastasios Kyrillidis
Christopher M. Jermaine
OOD
84
38
0
04 Oct 2019
The Error-Feedback Framework: Better Rates for SGD with Delayed Gradients and Compressed Communication
Sebastian U. Stich
Sai Praneeth Karimireddy
FedML
62
20
0
11 Sep 2019
Once-for-All: Train One Network and Specialize it for Efficient Deployment
Han Cai
Chuang Gan
Tianzhe Wang
Zhekai Zhang
Song Han
OOD
113
1,283
0
26 Aug 2019
Unified Optimal Analysis of the (Stochastic) Gradient Method
Sebastian U. Stich
54
113
0
09 Jul 2019
fairseq: A Fast, Extensible Toolkit for Sequence Modeling
Myle Ott
Sergey Edunov
Alexei Baevski
Angela Fan
Sam Gross
Nathan Ng
David Grangier
Michael Auli
VLM
FaML
114
3,156
0
01 Apr 2019
Slimmable Neural Networks
Jiahui Yu
L. Yang
N. Xu
Jianchao Yang
Thomas Huang
88
556
0
21 Dec 2018
A Tight Convergence Analysis for Stochastic Gradient Descent with Delayed Updates
Yossi Arjevani
Ohad Shamir
Nathan Srebro
72
63
0
26 Jun 2018
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle
Michael Carbin
253
3,485
0
09 Mar 2018
On First-Order Meta-Learning Algorithms
Alex Nichol
Joshua Achiam
John Schulman
233
2,237
0
08 Mar 2018
To prune, or not to prune: exploring the efficacy of pruning for model compression
Michael Zhu
Suyog Gupta
197
1,281
0
05 Oct 2017
Sparse Communication for Distributed Gradient Descent
Alham Fikri Aji
Kenneth Heafield
76
741
0
17 Apr 2017
Coordinating Filters for Faster Deep Neural Networks
W. Wen
Cong Xu
Chunpeng Wu
Yandan Wang
Yiran Chen
Hai Helen Li
43
138
0
28 Mar 2017
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
Huifeng Guo
Ruiming Tang
Yunming Ye
Zhenguo Li
Xiuqiang He
122
2,654
0
13 Mar 2017
Wide & Deep Learning for Recommender Systems
Heng-Tze Cheng
L. Koc
Jeremiah Harmsen
T. Shaked
Tushar Chandra
...
Zakaria Haque
Lichan Hong
Vihan Jain
Xiaobing Liu
Hemal Shah
HAI
VLM
192
3,663
0
24 Jun 2016
Learning both Weights and Connections for Efficient Neural Networks
Song Han
Jeff Pool
J. Tran
W. Dally
CVBM
313
6,700
0
08 Jun 2015
1