Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.08443
Cited By
Reproducing Kernel Hilbert Space, Mercer's Theorem, Eigenfunctions, Nyström Method, and Use of Kernels in Machine Learning: Tutorial and Survey
15 June 2021
Benyamin Ghojogh
A. Ghodsi
Fakhri Karray
Mark Crowley
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Reproducing Kernel Hilbert Space, Mercer's Theorem, Eigenfunctions, Nyström Method, and Use of Kernels in Machine Learning: Tutorial and Survey"
22 / 22 papers shown
Title
A Distributional Treatment of Real2Sim2Real for Vision-Driven Deformable Linear Object Manipulation
Georgios Kamaras
Subramanian Ramamoorthy
32
0
0
25 Feb 2025
STAF: Sinusoidal Trainable Activation Functions for Implicit Neural Representation
Alireza Morsali
MohammadJavad Vaez
Hossein Soltani
A. Kazerouni
Babak Taati
Morteza Mohammad-Noori
144
1
0
02 Feb 2025
ProKeR: A Kernel Perspective on Few-Shot Adaptation of Large Vision-Language Models
Yassir Bendou
Amine Ouasfi
Vincent Gripon
A. Boukhayma
VLM
51
0
0
19 Jan 2025
Convolutional Filtering with RKHS Algebras
Alejandro Parada-Mayorga
Leopoldo Agorio
Alejandro Ribeiro
J. Bazerque
38
0
0
02 Nov 2024
Learning to Embed Distributions via Maximum Kernel Entropy
Oleksii Kachaiev
Stefano Recanatesi
OOD
49
0
0
01 Aug 2024
Attention as Robust Representation for Time Series Forecasting
Peisong Niu
Tian Zhou
Xue Wang
Liang Sun
Rong Jin
AI4TS
24
4
0
08 Feb 2024
Rethinking Backdoor Attacks on Dataset Distillation: A Kernel Method Perspective
Ming-Yu Chung
Sheng-Yen Chou
Chia-Mu Yu
Pin-Yu Chen
Sy-Yen Kuo
Tsung-Yi Ho
DD
42
6
0
28 Nov 2023
Pseudo-keypoint RKHS Learning for Self-supervised 6DoF Pose Estimation
Yangzheng Wu
Michael A. Greenspan
18
1
0
16 Nov 2023
Optimal Transport for Kernel Gaussian Mixture Models
Jung Hun Oh
Rena Elkin
Anish K. Simhal
Jiening Zhu
Joseph O. Deasy
Allen Tannenbaum
OT
35
0
0
28 Oct 2023
An Exact Kernel Equivalence for Finite Classification Models
Brian Bell
Michaela Geyer
David Glickenstein
Amanda Fernandez
Juston Moore
27
2
0
01 Aug 2023
Taming graph kernels with random features
K. Choromanski
32
12
0
29 Apr 2023
On Mitigating the Utility-Loss in Differentially Private Learning: A new Perspective by a Geometrically Inspired Kernel Approach
Mohit Kumar
Bernhard A. Moser
Lukas Fischer
11
2
0
03 Apr 2023
Learning Inter-Annual Flood Loss Risk Models From Historical Flood Insurance Claims and Extreme Rainfall Data
Joaquín Salas
Anamitra Saha
S. Ravela
AI4CE
11
0
0
15 Dec 2022
Contrastive Corpus Attribution for Explaining Representations
Christy Lin
Hugh Chen
Chanwoo Kim
Su-In Lee
SSL
19
8
0
30 Sep 2022
Parameterized Quantum Circuits with Quantum Kernels for Machine Learning: A Hybrid Quantum-Classical Approach
Daniel T. Chang
30
4
0
28 Sep 2022
Understanding the Role of Nonlinearity in Training Dynamics of Contrastive Learning
Yuandong Tian
MLT
26
13
0
02 Jun 2022
Diverse Weight Averaging for Out-of-Distribution Generalization
Alexandre Ramé
Matthieu Kirchmeyer
Thibaud Rahier
A. Rakotomamonjy
Patrick Gallinari
Matthieu Cord
OOD
199
128
0
19 May 2022
Spectral, Probabilistic, and Deep Metric Learning: Tutorial and Survey
Benyamin Ghojogh
A. Ghodsi
Fakhri Karray
Mark Crowley
52
20
0
23 Jan 2022
Generative Adversarial Networks and Adversarial Autoencoders: Tutorial and Survey
Benyamin Ghojogh
A. Ghodsi
Fakhri Karray
Mark Crowley
GAN
34
12
0
26 Nov 2021
Sufficient Dimension Reduction for High-Dimensional Regression and Low-Dimensional Embedding: Tutorial and Survey
Benyamin Ghojogh
A. Ghodsi
Fakhri Karray
Mark Crowley
23
2
0
18 Oct 2021
Johnson-Lindenstrauss Lemma, Linear and Nonlinear Random Projections, Random Fourier Features, and Random Kitchen Sinks: Tutorial and Survey
Benyamin Ghojogh
A. Ghodsi
Fakhri Karray
Mark Crowley
21
11
0
09 Aug 2021
Unified Framework for Spectral Dimensionality Reduction, Maximum Variance Unfolding, and Kernel Learning By Semidefinite Programming: Tutorial and Survey
Benyamin Ghojogh
A. Ghodsi
Fakhri Karray
Mark Crowley
16
4
0
29 Jun 2021
1