Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.07880
Cited By
Scaling Neural Tangent Kernels via Sketching and Random Features
15 June 2021
A. Zandieh
Insu Han
H. Avron
N. Shoham
Chaewon Kim
Jinwoo Shin
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Scaling Neural Tangent Kernels via Sketching and Random Features"
7 / 7 papers shown
Title
Tensor Sketch: Fast and Scalable Polynomial Kernel Approximation
Ninh Pham
Rasmus Pagh
99
0
0
13 May 2025
Optimal Kernel Quantile Learning with Random Features
Caixing Wang
Xingdong Feng
64
1
0
24 Aug 2024
A Framework and Benchmark for Deep Batch Active Learning for Regression
David Holzmüller
Viktor Zaverkin
Johannes Kastner
Ingo Steinwart
UQCV
BDL
GP
61
34
0
17 Mar 2022
Harnessing the Power of Infinitely Wide Deep Nets on Small-data Tasks
Sanjeev Arora
S. Du
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
Dingli Yu
AAML
47
162
0
03 Oct 2019
Generalization Bounds of Stochastic Gradient Descent for Wide and Deep Neural Networks
Yuan Cao
Quanquan Gu
MLT
AI4CE
64
384
0
30 May 2019
Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian Process Behavior, Gradient Independence, and Neural Tangent Kernel Derivation
Greg Yang
69
286
0
13 Feb 2019
Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks
Difan Zou
Yuan Cao
Dongruo Zhou
Quanquan Gu
ODL
114
448
0
21 Nov 2018
1