Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.07804
Cited By
v1
v2 (latest)
Controlling Neural Networks with Rule Representations
14 June 2021
Sungyong Seo
Sercan O. Arik
Jinsung Yoon
Xiang Zhang
Kihyuk Sohn
Tomas Pfister
OOD
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Controlling Neural Networks with Rule Representations"
23 / 23 papers shown
Title
Underspecification Presents Challenges for Credibility in Modern Machine Learning
Alexander DÁmour
Katherine A. Heller
D. Moldovan
Ben Adlam
B. Alipanahi
...
Kellie Webster
Steve Yadlowsky
T. Yun
Xiaohua Zhai
D. Sculley
OffRL
117
687
0
06 Nov 2020
MQTransformer: Multi-Horizon Forecasts with Context Dependent and Feedback-Aware Attention
Carson Eisenach
Yagna Patel
Dhruv Madeka
AI4TS
59
37
0
30 Sep 2020
Very Deep Transformers for Neural Machine Translation
Xiaodong Liu
Kevin Duh
Liyuan Liu
Jianfeng Gao
60
104
0
18 Aug 2020
Lagrangian Duality for Constrained Deep Learning
Ferdinando Fioretto
Pascal Van Hentenryck
Terrence W.K. Mak
Cuong Tran
Federico Baldo
M. Lombardi
PINN
47
83
0
26 Jan 2020
Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting
Bryan Lim
Sercan O. Arik
Nicolas Loeff
Tomas Pfister
AI4TS
118
1,463
0
19 Dec 2019
Newton vs the machine: solving the chaotic three-body problem using deep neural networks
Philip G. Breen
Christopher N. Foley
Tjarda Boekholt
Simon Portegies Zwart
AI4CE
51
73
0
16 Oct 2019
Neural Oblivious Decision Ensembles for Deep Learning on Tabular Data
Sergei Popov
S. Morozov
Artem Babenko
LMTD
137
314
0
13 Sep 2019
One Explanation Does Not Fit All: A Toolkit and Taxonomy of AI Explainability Techniques
Vijay Arya
Rachel K. E. Bellamy
Pin-Yu Chen
Amit Dhurandhar
Michael Hind
...
Karthikeyan Shanmugam
Moninder Singh
Kush R. Varshney
Dennis L. Wei
Yunfeng Zhang
XAI
67
392
0
06 Sep 2019
TabNet: Attentive Interpretable Tabular Learning
Sercan O. Arik
Tomas Pfister
LMTD
188
1,353
0
20 Aug 2019
Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning
M. Lutter
Christian Ritter
Jan Peters
PINN
AI4CE
60
379
0
10 Jul 2019
Fixing the train-test resolution discrepancy
Hugo Touvron
Andrea Vedaldi
Matthijs Douze
Hervé Jégou
119
423
0
14 Jun 2019
Hamiltonian Neural Networks
S. Greydanus
Misko Dzamba
J. Yosinski
PINN
AI4CE
118
894
0
04 Jun 2019
Boolean Decision Rules via Column Generation
S. Dash
Oktay Gunluk
Dennis L. Wei
67
174
0
24 May 2018
Mitigating Unwanted Biases with Adversarial Learning
B. Zhang
Blake Lemoine
Margaret Mitchell
FaML
197
1,389
0
22 Jan 2018
Adversarial Examples: Attacks and Defenses for Deep Learning
Xiaoyong Yuan
Pan He
Qile Zhu
Xiaolin Li
SILM
AAML
94
1,622
0
19 Dec 2017
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
280
9,764
0
25 Oct 2017
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
707
131,652
0
12 Jun 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
402
3,798
0
28 Feb 2017
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
543
5,897
0
08 Jul 2016
Harnessing Deep Neural Networks with Logic Rules
Zhiting Hu
Xuezhe Ma
Zhengzhong Liu
Eduard H. Hovy
Eric Xing
AI4CE
NAI
56
614
0
21 Mar 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,990
0
16 Feb 2016
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
883
27,373
0
02 Dec 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
277
19,066
0
20 Dec 2014
1