ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.07756
  4. Cited By
Counterfactual Explanations for Machine Learning: Challenges Revisited

Counterfactual Explanations for Machine Learning: Challenges Revisited

14 June 2021
Sahil Verma
John P Dickerson
Keegan E. Hines
    LRM
ArXivPDFHTML

Papers citing "Counterfactual Explanations for Machine Learning: Challenges Revisited"

14 / 14 papers shown
Title
Beyond One-Size-Fits-All: Adapting Counterfactual Explanations to User
  Objectives
Beyond One-Size-Fits-All: Adapting Counterfactual Explanations to User Objectives
Orfeas Menis Mastromichalakis
Jason Liartis
Giorgos Stamou
24
1
0
12 Apr 2024
View-based Explanations for Graph Neural Networks
View-based Explanations for Graph Neural Networks
Tingyang Chen
Dazhuo Qiu
Yinghui Wu
Arijit Khan
Xiangyu Ke
Yunjun Gao
46
9
0
04 Jan 2024
Survey on AI Ethics: A Socio-technical Perspective
Survey on AI Ethics: A Socio-technical Perspective
Dave Mbiazi
Meghana Bhange
Maryam Babaei
Ivaxi Sheth
Patrik Kenfack
23
4
0
28 Nov 2023
T-COL: Generating Counterfactual Explanations for General User
  Preferences on Variable Machine Learning Systems
T-COL: Generating Counterfactual Explanations for General User Preferences on Variable Machine Learning Systems
Yiming Li
Daling Wang
Wenfang Wu
Shi Feng
Yifei Zhang
CML
50
1
0
28 Sep 2023
Preemptively Pruning Clever-Hans Strategies in Deep Neural Networks
Preemptively Pruning Clever-Hans Strategies in Deep Neural Networks
Lorenz Linhardt
Klaus-Robert Muller
G. Montavon
AAML
31
7
0
12 Apr 2023
RACCER: Towards Reachable and Certain Counterfactual Explanations for
  Reinforcement Learning
RACCER: Towards Reachable and Certain Counterfactual Explanations for Reinforcement Learning
Jasmina Gajcin
Ivana Dusparic
CML
32
3
0
08 Mar 2023
Understanding User Preferences in Explainable Artificial Intelligence: A
  Survey and a Mapping Function Proposal
Understanding User Preferences in Explainable Artificial Intelligence: A Survey and a Mapping Function Proposal
M. Hashemi
Ali Darejeh
Francisco Cruz
44
3
0
07 Feb 2023
Evaluating counterfactual explanations using Pearl's counterfactual
  method
Evaluating counterfactual explanations using Pearl's counterfactual method
Bevan I. Smith
CML
30
1
0
06 Jan 2023
Counterfactual Explanations for Misclassified Images: How Human and
  Machine Explanations Differ
Counterfactual Explanations for Misclassified Images: How Human and Machine Explanations Differ
Eoin Delaney
A. Pakrashi
Derek Greene
Markt. Keane
35
16
0
16 Dec 2022
Redefining Counterfactual Explanations for Reinforcement Learning:
  Overview, Challenges and Opportunities
Redefining Counterfactual Explanations for Reinforcement Learning: Overview, Challenges and Opportunities
Jasmina Gajcin
Ivana Dusparic
CML
OffRL
37
8
0
21 Oct 2022
Interpretation of Black Box NLP Models: A Survey
Interpretation of Black Box NLP Models: A Survey
Shivani Choudhary
N. Chatterjee
S. K. Saha
FAtt
34
10
0
31 Mar 2022
MCCE: Monte Carlo sampling of realistic counterfactual explanations
MCCE: Monte Carlo sampling of realistic counterfactual explanations
Annabelle Redelmeier
Martin Jullum
K. Aas
Anders Løland
BDL
37
11
0
18 Nov 2021
Counterfactual Explanations and Algorithmic Recourses for Machine
  Learning: A Review
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan E. Hines
John P. Dickerson
Chirag Shah
CML
26
164
0
20 Oct 2020
Improving fairness in machine learning systems: What do industry
  practitioners need?
Improving fairness in machine learning systems: What do industry practitioners need?
Kenneth Holstein
Jennifer Wortman Vaughan
Hal Daumé
Miroslav Dudík
Hanna M. Wallach
FaML
HAI
195
742
0
13 Dec 2018
1