Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.07512
Cited By
Last Layer Marginal Likelihood for Invariance Learning
14 June 2021
Pola Schwobel
Martin Jørgensen
Sebastian W. Ober
Mark van der Wilk
BDL
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Last Layer Marginal Likelihood for Invariance Learning"
9 / 9 papers shown
Title
Tune without Validation: Searching for Learning Rate and Weight Decay on Training Sets
Lorenzo Brigato
S. Mougiakakou
45
0
0
08 Mar 2024
A tradeoff between universality of equivariant models and learnability of symmetries
Vasco Portilheiro
35
2
0
17 Oct 2022
Relaxing Equivariance Constraints with Non-stationary Continuous Filters
Tycho F. A. van der Ouderaa
David W. Romero
Mark van der Wilk
24
32
0
14 Apr 2022
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Sanae Lotfi
Pavel Izmailov
Gregory W. Benton
Micah Goldblum
A. Wilson
UQCV
BDL
52
56
0
23 Feb 2022
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations
Alexander Immer
Tycho F. A. van der Ouderaa
Gunnar Rätsch
Vincent Fortuin
Mark van der Wilk
BDL
39
44
0
22 Feb 2022
The Promises and Pitfalls of Deep Kernel Learning
Sebastian W. Ober
C. Rasmussen
Mark van der Wilk
UQCV
BDL
21
107
0
24 Feb 2021
A Framework for Interdomain and Multioutput Gaussian Processes
Mark van der Wilk
Vincent Dutordoir
S. T. John
A. Artemev
Vincent Adam
J. Hensman
40
94
0
02 Mar 2020
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks
John Bradshaw
A. G. Matthews
Zoubin Ghahramani
BDL
AAML
68
171
0
08 Jul 2017
Manifold Gaussian Processes for Regression
Roberto Calandra
Jan Peters
C. Rasmussen
M. Deisenroth
92
271
0
24 Feb 2014
1