Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.07504
Cited By
Characterizing the risk of fairwashing
14 June 2021
Ulrich Aïvodji
Hiromi Arai
Sébastien Gambs
Satoshi Hara
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Characterizing the risk of fairwashing"
20 / 20 papers shown
Title
Fair Play for Individuals, Foul Play for Groups? Auditing Anonymization's Impact on ML Fairness
Héber H. Arcolezi
Mina Alishahi
Adda-Akram Bendoukha
Nesrine Kaaniche
36
0
0
12 May 2025
The Curious Case of Arbitrariness in Machine Learning
Prakhar Ganesh
Afaf Taik
G. Farnadi
59
2
0
28 Jan 2025
SoK: Taming the Triangle -- On the Interplays between Fairness, Interpretability and Privacy in Machine Learning
Julien Ferry
Ulrich Aïvodji
Sébastien Gambs
Marie-José Huguet
Mohamed Siala
FaML
26
5
0
22 Dec 2023
A Path to Simpler Models Starts With Noise
Lesia Semenova
Harry Chen
Ronald E. Parr
Cynthia Rudin
33
15
0
30 Oct 2023
A Critical Survey on Fairness Benefits of Explainable AI
Luca Deck
Jakob Schoeffer
Maria De-Arteaga
Niklas Kühl
34
11
0
15 Oct 2023
Probabilistic Dataset Reconstruction from Interpretable Models
Julien Ferry
Ulrich Aïvodji
Sébastien Gambs
Marie-José Huguet
Mohamed Siala
24
5
0
29 Aug 2023
Manipulation Risks in Explainable AI: The Implications of the Disagreement Problem
S. Goethals
David Martens
Theodoros Evgeniou
36
4
0
24 Jun 2023
Adversarial Attacks on the Interpretation of Neuron Activation Maximization
Géraldin Nanfack
A. Fulleringer
Jonathan Marty
Michael Eickenberg
Eugene Belilovsky
AAML
FAtt
25
10
0
12 Jun 2023
Adversarial attacks and defenses in explainable artificial intelligence: A survey
Hubert Baniecki
P. Biecek
AAML
42
63
0
06 Jun 2023
On the relevance of APIs facing fairwashed audits
Jade Garcia Bourrée
Erwan Le Merrer
Gilles Tredan
Benoit Rottembourg
MLAU
17
0
0
23 May 2023
Connecting the Dots in Trustworthy Artificial Intelligence: From AI Principles, Ethics, and Key Requirements to Responsible AI Systems and Regulation
Natalia Díaz Rodríguez
Javier Del Ser
Mark Coeckelbergh
Marcos López de Prado
E. Herrera-Viedma
Francisco Herrera
XAI
27
264
0
02 May 2023
Why is plausibility surprisingly problematic as an XAI criterion?
Weina Jin
Xiaoxiao Li
Ghassan Hamarneh
49
3
0
30 Mar 2023
Learning Hybrid Interpretable Models: Theory, Taxonomy, and Methods
Julien Ferry
Gabriel Laberge
Ulrich Aïvodji
28
5
0
08 Mar 2023
Tensions Between the Proxies of Human Values in AI
Teresa Datta
D. Nissani
Max Cembalest
Akash Khanna
Haley Massa
John P. Dickerson
34
2
0
14 Dec 2022
The Road to Explainability is Paved with Bias: Measuring the Fairness of Explanations
Aparna Balagopalan
Haoran Zhang
Kimia Hamidieh
Thomas Hartvigsen
Frank Rudzicz
Marzyeh Ghassemi
38
77
0
06 May 2022
Computing the Collection of Good Models for Rule Lists
Kota Mata
Kentaro Kanamori
Hiroki Arimura
11
7
0
24 Apr 2022
When and How to Fool Explainable Models (and Humans) with Adversarial Examples
Jon Vadillo
Roberto Santana
Jose A. Lozano
SILM
AAML
36
11
0
05 Jul 2021
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan E. Hines
John P. Dickerson
Chirag Shah
CML
24
162
0
20 Oct 2020
Learning Certifiably Optimal Rule Lists for Categorical Data
E. Angelino
Nicholas Larus-Stone
Daniel Alabi
Margo Seltzer
Cynthia Rudin
48
195
0
06 Apr 2017
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
207
2,084
0
24 Oct 2016
1