ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.06513
  4. Cited By
Learning the optimal Tikhonov regularizer for inverse problems

Learning the optimal Tikhonov regularizer for inverse problems

11 June 2021
Giovanni S. Alberti
E. De Vito
Matti Lassas
Luca Ratti
Matteo Santacesaria
ArXivPDFHTML

Papers citing "Learning the optimal Tikhonov regularizer for inverse problems"

18 / 18 papers shown
Title
Good Things Come in Pairs: Paired Autoencoders for Inverse Problems
Good Things Come in Pairs: Paired Autoencoders for Inverse Problems
Matthias Chung
B. Peters
Michael Solomon
34
0
0
10 May 2025
A Generalization Bound for a Family of Implicit Networks
A Generalization Bound for a Family of Implicit Networks
Samy Wu Fung
Benjamin Berkels
43
0
0
28 Jan 2025
The Star Geometry of Critic-Based Regularizer Learning
The Star Geometry of Critic-Based Regularizer Learning
Oscar Leong
Eliza O'Reilly
Yong Sheng Soh
AAML
42
0
0
29 Aug 2024
sc-OTGM: Single-Cell Perturbation Modeling by Solving Optimal Mass
  Transport on the Manifold of Gaussian Mixtures
sc-OTGM: Single-Cell Perturbation Modeling by Solving Optimal Mass Transport on the Manifold of Gaussian Mixtures
Andac Demir
E. Solovyeva
James Boylan
Mei Xiao
Fabrizio Serluca
S. Hoersch
Jeremy L Jenkins
Murthy S. Devarakonda
B. Kiziltan
37
0
0
06 May 2024
Unsupervised Training of Convex Regularizers using Maximum Likelihood Estimation
Unsupervised Training of Convex Regularizers using Maximum Likelihood Estimation
Hongwei Tan
Ziruo Cai
Marcelo Pereyra
Subhadip Mukherjee
Junqi Tang
Carola-Bibiane Schönlieb
SSL
67
1
0
08 Apr 2024
Training Implicit Networks for Image Deblurring using Jacobian-Free
  Backpropagation
Training Implicit Networks for Image Deblurring using Jacobian-Free Backpropagation
Linghai Liu
Shuaicheng Tong
Lisa Zhao
21
1
0
03 Feb 2024
Weakly Convex Regularisers for Inverse Problems: Convergence of Critical
  Points and Primal-Dual Optimisation
Weakly Convex Regularisers for Inverse Problems: Convergence of Critical Points and Primal-Dual Optimisation
Zakhar Shumaylov
Jeremy Budd
Subhadip Mukherjee
Carola-Bibiane Schönlieb
26
6
0
01 Feb 2024
Learning a Gaussian Mixture for Sparsity Regularization in Inverse
  Problems
Learning a Gaussian Mixture for Sparsity Regularization in Inverse Problems
Giovanni S. Alberti
Luca Ratti
Matteo Santacesaria
Silvia Sciutto
13
1
0
29 Jan 2024
Statistical inverse learning problems with random observations
Statistical inverse learning problems with random observations
Abhishake
T. Helin
Nicole Mucke
11
1
0
23 Dec 2023
Learned reconstruction methods for inverse problems: sample error
  estimates
Learned reconstruction methods for inverse problems: sample error estimates
Luca Ratti
26
0
0
21 Dec 2023
Learned Regularization for Inverse Problems: Insights from a Spectral
  Model
Learned Regularization for Inverse Problems: Insights from a Spectral Model
Martin Burger
Samira Kabri
27
0
0
15 Dec 2023
On Learning the Optimal Regularization Parameter in Inverse Problems
On Learning the Optimal Regularization Parameter in Inverse Problems
Jonathan Chirinos-Rodriguez
E. De Vito
C. Molinari
Lorenzo Rosasco
S. Villa
17
3
0
27 Nov 2023
Regularization, early-stopping and dreaming: a Hopfield-like setup to
  address generalization and overfitting
Regularization, early-stopping and dreaming: a Hopfield-like setup to address generalization and overfitting
E. Agliari
Francesco Alemanno
Miriam Aquaro
A. Fachechi
19
7
0
01 Aug 2023
Convergent Data-driven Regularizations for CT Reconstruction
Convergent Data-driven Regularizations for CT Reconstruction
Samira Kabri
Alexander Auras
D. Riccio
Hartmut Bauermeister
Martin Benning
Michael Moeller
Martin Burger
38
12
0
14 Dec 2022
Designing Universal Causal Deep Learning Models: The Case of Infinite-Dimensional Dynamical Systems from Stochastic Analysis
Designing Universal Causal Deep Learning Models: The Case of Infinite-Dimensional Dynamical Systems from Stochastic Analysis
Luca Galimberti
Anastasis Kratsios
Giulia Livieri
OOD
28
14
0
24 Oct 2022
Learning Variational Models with Unrolling and Bilevel Optimization
Learning Variational Models with Unrolling and Bilevel Optimization
Christoph Brauer
Niklas Breustedt
T. Wolff
D. Lorenz
SSL
31
3
0
26 Sep 2022
Learning via nonlinear conjugate gradients and depth-varying neural ODEs
Learning via nonlinear conjugate gradients and depth-varying neural ODEs
George Baravdish
Gabriel Eilertsen
Rym Jaroudi
B. Johansson
Lukávs Malý
Jonas Unger
16
3
0
11 Feb 2022
Convergence Rates for Learning Linear Operators from Noisy Data
Convergence Rates for Learning Linear Operators from Noisy Data
Maarten V. de Hoop
Nikola B. Kovachki
Nicholas H. Nelsen
Andrew M. Stuart
19
54
0
27 Aug 2021
1