ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.06089
  4. Cited By
Gradient Disaggregation: Breaking Privacy in Federated Learning by
  Reconstructing the User Participant Matrix

Gradient Disaggregation: Breaking Privacy in Federated Learning by Reconstructing the User Participant Matrix

10 June 2021
Maximilian Lam
Gu-Yeon Wei
David Brooks
Vijay Janapa Reddi
Michael Mitzenmacher
    FedML
ArXivPDFHTML

Papers citing "Gradient Disaggregation: Breaking Privacy in Federated Learning by Reconstructing the User Participant Matrix"

24 / 24 papers shown
Title
Differential Privacy Personalized Federated Learning Based on Dynamically Sparsified Client Updates
Differential Privacy Personalized Federated Learning Based on Dynamically Sparsified Client Updates
Chuanyin Wang
Yifei Zhang
Neng Gao
Qiang Luo
FedML
151
0
0
12 Mar 2025
Attack of the Tails: Yes, You Really Can Backdoor Federated Learning
Attack of the Tails: Yes, You Really Can Backdoor Federated Learning
Hongyi Wang
Kartik K. Sreenivasan
Shashank Rajput
Harit Vishwakarma
Saurabh Agarwal
Jy-yong Sohn
Kangwook Lee
Dimitris Papailiopoulos
FedML
68
603
0
09 Jul 2020
A Framework for Evaluating Gradient Leakage Attacks in Federated
  Learning
A Framework for Evaluating Gradient Leakage Attacks in Federated Learning
Wenqi Wei
Ling Liu
Margaret Loper
Ka-Ho Chow
Mehmet Emre Gursoy
Stacey Truex
Yanzhao Wu
FedML
65
148
0
22 Apr 2020
Inverting Gradients -- How easy is it to break privacy in federated
  learning?
Inverting Gradients -- How easy is it to break privacy in federated learning?
Jonas Geiping
Hartmut Bauermeister
Hannah Dröge
Michael Moeller
FedML
96
1,222
0
31 Mar 2020
Threats to Federated Learning: A Survey
Threats to Federated Learning: A Survey
Lingjuan Lyu
Han Yu
Qiang Yang
FedML
262
437
0
04 Mar 2020
Turbo-Aggregate: Breaking the Quadratic Aggregation Barrier in Secure
  Federated Learning
Turbo-Aggregate: Breaking the Quadratic Aggregation Barrier in Secure Federated Learning
Jinhyun So
Başak Güler
A. Avestimehr
FedML
76
298
0
11 Feb 2020
Advances and Open Problems in Federated Learning
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
192
6,229
0
10 Dec 2019
Federated Learning: Challenges, Methods, and Future Directions
Federated Learning: Challenges, Methods, and Future Directions
Tian Li
Anit Kumar Sahu
Ameet Talwalkar
Virginia Smith
FedML
109
4,496
0
21 Aug 2019
Deep Leakage from Gradients
Deep Leakage from Gradients
Ligeng Zhu
Zhijian Liu
Song Han
FedML
90
2,199
0
21 Jun 2019
Towards Federated Learning at Scale: System Design
Towards Federated Learning at Scale: System Design
Keith Bonawitz
Hubert Eichner
W. Grieskamp
Dzmitry Huba
A. Ingerman
...
H. B. McMahan
Timon Van Overveldt
David Petrou
Daniel Ramage
Jason Roselander
FedML
119
2,660
0
04 Feb 2019
Federated Learning for Mobile Keyboard Prediction
Federated Learning for Mobile Keyboard Prediction
Andrew Straiton Hard
Kanishka Rao
Zhifeng Lin
Swaroop Indra Ramaswamy
Youjie Li
S. Augenstein
Alex Schwing
M. Annavaram
A. Avestimehr
FedML
129
1,531
0
08 Nov 2018
Mitigating Sybils in Federated Learning Poisoning
Mitigating Sybils in Federated Learning Poisoning
Clement Fung
Chris J. M. Yoon
Ivan Beschastnikh
AAML
58
501
0
14 Aug 2018
How To Backdoor Federated Learning
How To Backdoor Federated Learning
Eugene Bagdasaryan
Andreas Veit
Yiqing Hua
D. Estrin
Vitaly Shmatikov
SILM
FedML
91
1,907
0
02 Jul 2018
Exploiting Unintended Feature Leakage in Collaborative Learning
Exploiting Unintended Feature Leakage in Collaborative Learning
Luca Melis
Congzheng Song
Emiliano De Cristofaro
Vitaly Shmatikov
FedML
138
1,471
0
10 May 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing
  Defenses to Adversarial Examples
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
187
3,180
0
01 Feb 2018
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
1.1K
20,813
0
17 Apr 2017
Deep Models Under the GAN: Information Leakage from Collaborative Deep
  Learning
Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning
Briland Hitaj
G. Ateniese
Fernando Perez-Cruz
FedML
111
1,399
0
24 Feb 2017
Membership Inference Attacks against Machine Learning Models
Membership Inference Attacks against Machine Learning Models
Reza Shokri
M. Stronati
Congzheng Song
Vitaly Shmatikov
SLR
MIALM
MIACV
228
4,103
0
18 Oct 2016
Federated Learning: Strategies for Improving Communication Efficiency
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
286
4,636
0
18 Oct 2016
Communication-Efficient Learning of Deep Networks from Decentralized
  Data
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
380
17,437
0
17 Feb 2016
Federated Optimization:Distributed Optimization Beyond the Datacenter
Federated Optimization:Distributed Optimization Beyond the Datacenter
Jakub Konecný
H. B. McMahan
Daniel Ramage
FedML
113
735
0
11 Nov 2015
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
  Quantization and Huffman Coding
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
Song Han
Huizi Mao
W. Dally
3DGS
233
8,821
0
01 Oct 2015
Learning both Weights and Connections for Efficient Neural Networks
Learning both Weights and Connections for Efficient Neural Networks
Song Han
Jeff Pool
J. Tran
W. Dally
CVBM
285
6,660
0
08 Jun 2015
Matrix factorization with Binary Components
Matrix factorization with Binary Components
M. Slawski
Matthias Hein
P. Lutsik
76
41
0
23 Jan 2014
1