ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.05384
  4. Cited By
Long-time integration of parametric evolution equations with
  physics-informed DeepONets

Long-time integration of parametric evolution equations with physics-informed DeepONets

9 June 2021
Sizhuang He
P. Perdikaris
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "Long-time integration of parametric evolution equations with physics-informed DeepONets"

29 / 29 papers shown
Title
TI-DeepONet: Learnable Time Integration for Stable Long-Term Extrapolation
TI-DeepONet: Learnable Time Integration for Stable Long-Term Extrapolation
Dibyajyoti Nayak
Somdatta Goswami
73
0
0
22 May 2025
Solving and Learning Nonlinear PDEs with Gaussian Processes
Solving and Learning Nonlinear PDEs with Gaussian Processes
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
82
157
0
24 Mar 2021
Learning the solution operator of parametric partial differential
  equations with physics-informed DeepOnets
Learning the solution operator of parametric partial differential equations with physics-informed DeepOnets
Sizhuang He
Hanwen Wang
P. Perdikaris
AI4CE
102
710
0
19 Mar 2021
Evolutional Deep Neural Network
Evolutional Deep Neural Network
Yifan Du
T. Zaki
83
73
0
18 Mar 2021
Machine learning accelerated computational fluid dynamics
Machine learning accelerated computational fluid dynamics
Dmitrii Kochkov
Jamie A. Smith
Ayya Alieva
Qing Wang
M. Brenner
Stephan Hoyer
AI4CE
143
876
0
28 Jan 2021
On the eigenvector bias of Fourier feature networks: From regression to
  solving multi-scale PDEs with physics-informed neural networks
On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks
Sizhuang He
Hanwen Wang
P. Perdikaris
199
461
0
18 Dec 2020
NVIDIA SimNet^{TM}: an AI-accelerated multi-physics simulation framework
NVIDIA SimNet^{TM}: an AI-accelerated multi-physics simulation framework
O. Hennigh
S. Narasimhan
M. A. Nabian
Akshay Subramaniam
Kaustubh Tangsali
M. Rietmann
J. Ferrandis
Wonmin Byeon
Z. Fang
S. Choudhry
PINNAI4CE
143
129
0
14 Dec 2020
Self-Adaptive Physics-Informed Neural Networks using a Soft Attention
  Mechanism
Self-Adaptive Physics-Informed Neural Networks using a Soft Attention Mechanism
L. McClenny
U. Braga-Neto
PINN
92
461
0
07 Sep 2020
When and why PINNs fail to train: A neural tangent kernel perspective
When and why PINNs fail to train: A neural tangent kernel perspective
Sizhuang He
Xinling Yu
P. Perdikaris
141
924
0
28 Jul 2020
Solving Allen-Cahn and Cahn-Hilliard Equations using the Adaptive
  Physics Informed Neural Networks
Solving Allen-Cahn and Cahn-Hilliard Equations using the Adaptive Physics Informed Neural Networks
Colby Wight
Jia Zhao
80
225
0
09 Jul 2020
Fourier Features Let Networks Learn High Frequency Functions in Low
  Dimensional Domains
Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains
Matthew Tancik
Pratul P. Srinivasan
B. Mildenhall
Sara Fridovich-Keil
N. Raghavan
Utkarsh Singhal
R. Ramamoorthi
Jonathan T. Barron
Ren Ng
135
2,450
0
18 Jun 2020
Array Programming with NumPy
Array Programming with NumPy
Charles R. Harris
K. Millman
S. Walt
R. Gommers
Pauli Virtanen
...
Tyler Reddy
Warren Weckesser
Hameer Abbasi
C. Gohlke
T. Oliphant
161
15,066
0
18 Jun 2020
Learning to Simulate Complex Physics with Graph Networks
Learning to Simulate Complex Physics with Graph Networks
Alvaro Sanchez-Gonzalez
Jonathan Godwin
Tobias Pfaff
Rex Ying
J. Leskovec
Peter W. Battaglia
PINNAI4CE
148
1,104
0
21 Feb 2020
Understanding and mitigating gradient pathologies in physics-informed
  neural networks
Understanding and mitigating gradient pathologies in physics-informed neural networks
Sizhuang He
Yujun Teng
P. Perdikaris
AI4CEPINN
116
297
0
13 Jan 2020
Variational Physics-Informed Neural Networks For Solving Partial
  Differential Equations
Variational Physics-Informed Neural Networks For Solving Partial Differential Equations
E. Kharazmi
Z. Zhang
George Karniadakis
87
246
0
27 Nov 2019
DeepONet: Learning nonlinear operators for identifying differential
  equations based on the universal approximation theorem of operators
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
Lu Lu
Pengzhan Jin
George Karniadakis
248
2,162
0
08 Oct 2019
PPINN: Parareal Physics-Informed Neural Network for time-dependent PDEs
PPINN: Parareal Physics-Informed Neural Network for time-dependent PDEs
Xuhui Meng
Zhen Li
Dongkun Zhang
George Karniadakis
PINNAI4CE
84
456
0
23 Sep 2019
An Energy Approach to the Solution of Partial Differential Equations in
  Computational Mechanics via Machine Learning: Concepts, Implementation and
  Applications
An Energy Approach to the Solution of Partial Differential Equations in Computational Mechanics via Machine Learning: Concepts, Implementation and Applications
E. Samaniego
C. Anitescu
S. Goswami
Vien Minh Nguyen-Thanh
Hongwei Guo
Khader M. Hamdia
Timon Rabczuk
X. Zhuang
PINNAI4CE
234
1,389
0
27 Aug 2019
DeepXDE: A deep learning library for solving differential equations
DeepXDE: A deep learning library for solving differential equations
Lu Lu
Xuhui Meng
Zhiping Mao
George Karniadakis
PINNAI4CE
101
1,549
0
10 Jul 2019
Transfer learning enhanced physics informed neural network for
  phase-field modeling of fracture
Transfer learning enhanced physics informed neural network for phase-field modeling of fracture
S. Goswami
C. Anitescu
S. Chakraborty
Timon Rabczuk
PINN
88
614
0
04 Jul 2019
Modeling the Dynamics of PDE Systems with Physics-Constrained Deep
  Auto-Regressive Networks
Modeling the Dynamics of PDE Systems with Physics-Constrained Deep Auto-Regressive Networks
N. Geneva
N. Zabaras
AI4CE
71
275
0
13 Jun 2019
Machine learning in cardiovascular flows modeling: Predicting arterial
  blood pressure from non-invasive 4D flow MRI data using physics-informed
  neural networks
Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks
Georgios Kissas
Yibo Yang
E. Hwuang
W. Witschey
John A. Detre
P. Perdikaris
AI4CE
132
375
0
13 May 2019
Physics-Constrained Deep Learning for High-dimensional Surrogate
  Modeling and Uncertainty Quantification without Labeled Data
Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data
Yinhao Zhu
N. Zabaras
P. Koutsourelakis
P. Perdikaris
PINNAI4CE
121
871
0
18 Jan 2019
On the Spectral Bias of Neural Networks
On the Spectral Bias of Neural Networks
Nasim Rahaman
A. Baratin
Devansh Arpit
Felix Dräxler
Min Lin
Fred Hamprecht
Yoshua Bengio
Aaron Courville
167
1,456
0
22 Jun 2018
The Deep Ritz method: A deep learning-based numerical algorithm for
  solving variational problems
The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems
E. Weinan
Ting Yu
130
1,393
0
30 Sep 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
841
11,961
0
09 Mar 2017
Inferring solutions of differential equations using noisy multi-fidelity
  data
Inferring solutions of differential equations using noisy multi-fidelity data
M. Raissi
P. Perdikaris
George Karniadakis
AI4CE
67
290
0
16 Jul 2016
Automatic differentiation in machine learning: a survey
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINNAI4CEODL
179
2,824
0
20 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,433
0
22 Dec 2014
1