ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.05010
  4. Cited By
Loss function based second-order Jensen inequality and its application
  to particle variational inference

Loss function based second-order Jensen inequality and its application to particle variational inference

9 June 2021
Futoshi Futami
Tomoharu Iwata
N. Ueda
Issei Sato
Masashi Sugiyama
ArXivPDFHTML

Papers citing "Loss function based second-order Jensen inequality and its application to particle variational inference"

9 / 9 papers shown
Title
A Non-Asymptotic Analysis for Stein Variational Gradient Descent
A Non-Asymptotic Analysis for Stein Variational Gradient Descent
Anna Korba
Adil Salim
Michael Arbel
Giulia Luise
Arthur Gretton
61
78
0
17 Jun 2020
GDPP: Learning Diverse Generations Using Determinantal Point Process
GDPP: Learning Diverse Generations Using Determinantal Point Process
Mohamed Elfeki
Camille Couprie
M. Rivière
Mohamed Elhoseiny
55
64
0
30 Nov 2018
A Unified Particle-Optimization Framework for Scalable Bayesian Sampling
A Unified Particle-Optimization Framework for Scalable Bayesian Sampling
Changyou Chen
Ruiyi Zhang
Wenlin Wang
Bai Li
Liqun Chen
49
89
0
29 May 2018
Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep
  Networks for Thompson Sampling
Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling
C. Riquelme
George Tucker
Jasper Snoek
BDL
66
365
0
26 Feb 2018
Stein Variational Gradient Descent as Gradient Flow
Stein Variational Gradient Descent as Gradient Flow
Qiang Liu
OT
72
275
0
25 Apr 2017
Stein Variational Policy Gradient
Stein Variational Policy Gradient
Yang Liu
Prajit Ramachandran
Qiang Liu
Jian-wei Peng
69
139
0
07 Apr 2017
Stein Variational Gradient Descent: A General Purpose Bayesian Inference
  Algorithm
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
65
1,092
0
16 Aug 2016
PAC-Bayesian Theory Meets Bayesian Inference
PAC-Bayesian Theory Meets Bayesian Inference
Pascal Germain
Francis R. Bach
Alexandre Lacoste
Simon Lacoste-Julien
68
183
0
27 May 2016
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
258
4,787
0
04 Jan 2016
1