ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.04975
  4. Cited By
The dilemma of quantum neural networks

The dilemma of quantum neural networks

9 June 2021
Yan Qian
Xinbiao Wang
Yuxuan Du
Xingyao Wu
Dacheng Tao
ArXiv (abs)PDFHTML

Papers citing "The dilemma of quantum neural networks"

35 / 35 papers shown
Title
Encoding-dependent generalization bounds for parametrized quantum
  circuits
Encoding-dependent generalization bounds for parametrized quantum circuits
Matthias C. Caro
Elies Gil-Fuster
Johannes Jakob Meyer
Jens Eisert
R. Sweke
UQCV
49
103
0
07 Jun 2021
Towards understanding the power of quantum kernels in the NISQ era
Towards understanding the power of quantum kernels in the NISQ era
Xinbiao Wang
Yuxuan Du
Yong Luo
Dacheng Tao
114
75
0
31 Mar 2021
Generalization in Quantum Machine Learning: a Quantum Information
  Perspective
Generalization in Quantum Machine Learning: a Quantum Information Perspective
L. Banchi
Jason Pereira
S. Pirandola
57
22
0
17 Feb 2021
Supervised quantum machine learning models are kernel methods
Supervised quantum machine learning models are kernel methods
Maria Schuld
146
372
0
26 Jan 2021
On the statistical complexity of quantum circuits
On the statistical complexity of quantum circuits
Kaifeng Bu
D. E. Koh
Lu Li
Qingxian Luo
Yaobo Zhang
80
43
0
15 Jan 2021
Information-theoretic bounds on quantum advantage in machine learning
Information-theoretic bounds on quantum advantage in machine learning
Hsin-Yuan Huang
R. Kueng
J. Preskill
114
222
0
07 Jan 2021
Connecting ansatz expressibility to gradient magnitudes and barren
  plateaus
Connecting ansatz expressibility to gradient magnitudes and barren plateaus
Zoë Holmes
Kunal Sharma
M. Cerezo
Patrick J. Coles
204
431
0
06 Jan 2021
Variational Quantum Algorithms
Variational Quantum Algorithms
M. Cerezo
A. Arrasmith
Ryan Babbush
S. Benjamin
Suguru Endo
...
Jarrod R. McClean
K. Mitarai
Xiao Yuan
L. Cincio
Patrick J. Coles
107
2,537
0
16 Dec 2020
Power of data in quantum machine learning
Power of data in quantum machine learning
Hsin-Yuan Huang
Michael Broughton
Masoud Mohseni
Ryan Babbush
Sergio Boixo
Hartmut Neven
Jarrod R. McClean
99
653
0
03 Nov 2020
The power of quantum neural networks
The power of quantum neural networks
Amira Abbas
David Sutter
Christa Zoufal
Aurelien Lucchi
Alessio Figalli
Stefan Woerner
118
761
0
30 Oct 2020
Experimental Quantum Generative Adversarial Networks for Image
  Generation
Experimental Quantum Generative Adversarial Networks for Image Generation
Heliang Huang
Yuxuan Du
Mingming Gong
You-Wei Zhao
Yulin Wu
...
Chao Lu
Yu-Ao Chen
Dacheng Tao
Xiaobo Zhu
Jian-Wei Pan
GAN
50
180
0
13 Oct 2020
Qutrit-inspired Fully Self-supervised Shallow Quantum Learning Network
  for Brain Tumor Segmentation
Qutrit-inspired Fully Self-supervised Shallow Quantum Learning Network for Brain Tumor Segmentation
Debanjan Konar
S. Bhattacharyya
B. K. Panigrahi
E. Behrman
31
43
0
14 Sep 2020
The effect of data encoding on the expressive power of variational
  quantum machine learning models
The effect of data encoding on the expressive power of variational quantum machine learning models
Maria Schuld
R. Sweke
Johannes Jakob Meyer
74
520
0
19 Aug 2020
Recurrent Quantum Neural Networks
Recurrent Quantum Neural Networks
Johannes Bausch
57
155
0
25 Jun 2020
Robust data encodings for quantum classifiers
Robust data encodings for quantum classifiers
Ryan Larose
Brian Coyle
61
242
0
03 Mar 2020
Optimization for deep learning: theory and algorithms
Optimization for deep learning: theory and algorithms
Ruoyu Sun
ODL
127
169
0
19 Dec 2019
A quantum active learning algorithm for sampling against adversarial
  attacks
A quantum active learning algorithm for sampling against adversarial attacks
Pablo Antonio Moreno Casares
M. Martin-Delgado
AAML
44
10
0
06 Dec 2019
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
544
42,591
0
03 Dec 2019
Quantum Natural Gradient
Quantum Natural Gradient
J. Stokes
J. Izaac
N. Killoran
Giuseppe Carleo
54
409
0
04 Sep 2019
Parameterized quantum circuits as machine learning models
Parameterized quantum circuits as machine learning models
Marcello Benedetti
Erika Lloyd
Stefan H. Sack
Mattia Fiorentini
107
895
0
18 Jun 2019
Efficient Learning for Deep Quantum Neural Networks
Efficient Learning for Deep Quantum Neural Networks
Kerstin Beer
Dmytro Bondarenko
Terry Farrelly
T. Osborne
Robert Salzmann
Ramona Wolf
65
563
0
27 Feb 2019
Learning and Generalization in Overparameterized Neural Networks, Going
  Beyond Two Layers
Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers
Zeyuan Allen-Zhu
Yuanzhi Li
Yingyu Liang
MLT
201
775
0
12 Nov 2018
A Grover-search Based Quantum Learning Scheme for Classification
A Grover-search Based Quantum Learning Scheme for Classification
Yuxuan Du
Min-hsiu Hsieh
Tongliang Liu
Dacheng Tao
56
38
0
17 Sep 2018
Supervised learning with quantum enhanced feature spaces
Supervised learning with quantum enhanced feature spaces
Vojtěch Havlíček
A. Córcoles
K. Temme
A. Harrow
A. Kandala
J. Chow
J. Gambetta
84
1,833
0
30 Apr 2018
Barren plateaus in quantum neural network training landscapes
Barren plateaus in quantum neural network training landscapes
Jarrod R. McClean
Sergio Boixo
V. Smelyanskiy
Ryan Babbush
Hartmut Neven
95
1,825
0
29 Mar 2018
Generalization in Deep Learning
Generalization in Deep Learning
Kenji Kawaguchi
L. Kaelbling
Yoshua Bengio
ODL
103
460
0
16 Oct 2017
Exploring Generalization in Deep Learning
Exploring Generalization in Deep Learning
Behnam Neyshabur
Srinadh Bhojanapalli
David A. McAllester
Nathan Srebro
FAtt
162
1,259
0
27 Jun 2017
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
Priya Goyal
Piotr Dollár
Ross B. Girshick
P. Noordhuis
Lukasz Wesolowski
Aapo Kyrola
Andrew Tulloch
Yangqing Jia
Kaiming He
3DH
128
3,685
0
08 Jun 2017
Understanding deep learning requires rethinking generalization
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
348
4,635
0
10 Nov 2016
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
429
2,945
0
15 Sep 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN3DV
793
36,881
0
25 Aug 2016
Optimization Methods for Large-Scale Machine Learning
Optimization Methods for Large-Scale Machine Learning
Léon Bottou
Frank E. Curtis
J. Nocedal
249
3,225
0
15 Jun 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,426
0
10 Dec 2015
Escaping From Saddle Points --- Online Stochastic Gradient for Tensor
  Decomposition
Escaping From Saddle Points --- Online Stochastic Gradient for Tensor Decomposition
Rong Ge
Furong Huang
Chi Jin
Yang Yuan
143
1,059
0
06 Mar 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,312
0
22 Dec 2014
1