ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.04941
  4. Cited By
Symmetric Spaces for Graph Embeddings: A Finsler-Riemannian Approach

Symmetric Spaces for Graph Embeddings: A Finsler-Riemannian Approach

9 June 2021
F. López
Beatrice Pozzetti
Steve J. Trettel
Michael Strube
Anna Wienhard
ArXivPDFHTML

Papers citing "Symmetric Spaces for Graph Embeddings: A Finsler-Riemannian Approach"

6 / 6 papers shown
Title
Finsler Multi-Dimensional Scaling: Manifold Learning for Asymmetric Dimensionality Reduction and Embedding
Finsler Multi-Dimensional Scaling: Manifold Learning for Asymmetric Dimensionality Reduction and Embedding
Thomas Dagès
Simon Weber
Y. Lin
Ronen Talmon
Daniel Cremers
M. Lindenbaum
A. Bruckstein
Ron Kimmel
37
0
0
23 Mar 2025
Pseudo-Riemannian Embedding Models for Multi-Relational Graph
  Representations
Pseudo-Riemannian Embedding Models for Multi-Relational Graph Representations
Saee Paliwal
Angus Brayne
Benedek Fabian
Maciej Wiatrak
Aaron Sim
11
0
0
02 Dec 2022
Non-linear Embeddings in Hilbert Simplex Geometry
Non-linear Embeddings in Hilbert Simplex Geometry
Frank Nielsen
Ke Sun
19
5
0
22 Mar 2022
Heterogeneous manifolds for curvature-aware graph embedding
Heterogeneous manifolds for curvature-aware graph embedding
Francesco Di Giovanni
Giulia Luise
M. Bronstein
59
23
0
02 Feb 2022
Vector-valued Distance and Gyrocalculus on the Space of Symmetric
  Positive Definite Matrices
Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices
F. López
Beatrice Pozzetti
Steve J. Trettel
Michael Strube
Anna Wienhard
33
17
0
26 Oct 2021
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
259
3,239
0
24 Nov 2016
1