ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.04350
  4. Cited By
Nonsmooth Implicit Differentiation for Machine Learning and Optimization

Nonsmooth Implicit Differentiation for Machine Learning and Optimization

8 June 2021
Jérôme Bolte
Tam Le
Edouard Pauwels
Antonio Silveti-Falls
ArXivPDFHTML

Papers citing "Nonsmooth Implicit Differentiation for Machine Learning and Optimization"

22 / 22 papers shown
Title
Implicit differentiation for fast hyperparameter selection in non-smooth
  convex learning
Implicit differentiation for fast hyperparameter selection in non-smooth convex learning
Quentin Bertrand
Quentin Klopfenstein
Mathurin Massias
Mathieu Blondel
Samuel Vaiter
Alexandre Gramfort
Joseph Salmon
78
27
0
04 May 2021
The structure of conservative gradient fields
The structure of conservative gradient fields
A. Lewis
Tonghua Tian
AI4CE
45
8
0
03 Jan 2021
Implicit Graph Neural Networks
Implicit Graph Neural Networks
Fangda Gu
Heng Chang
Wenwu Zhu
Somayeh Sojoudi
L. Ghaoui
GNN
77
149
0
14 Sep 2020
Monotone operator equilibrium networks
Monotone operator equilibrium networks
Ezra Winston
J. Zico Kolter
62
130
0
15 Jun 2020
On Correctness of Automatic Differentiation for Non-Differentiable
  Functions
On Correctness of Automatic Differentiation for Non-Differentiable Functions
Wonyeol Lee
Hangyeol Yu
Xavier Rival
Hongseok Yang
49
41
0
12 Jun 2020
Directional convergence and alignment in deep learning
Directional convergence and alignment in deep learning
Ziwei Ji
Matus Telgarsky
59
171
0
11 Jun 2020
A mathematical model for automatic differentiation in machine learning
A mathematical model for automatic differentiation in machine learning
Jérôme Bolte
Edouard Pauwels
35
68
0
03 Jun 2020
Implicit differentiation of Lasso-type models for hyperparameter
  optimization
Implicit differentiation of Lasso-type models for hyperparameter optimization
Quentin Bertrand
Quentin Klopfenstein
Mathieu Blondel
Samuel Vaiter
Alexandre Gramfort
Joseph Salmon
83
66
0
20 Feb 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
496
42,449
0
03 Dec 2019
Differentiable Convex Optimization Layers
Differentiable Convex Optimization Layers
Akshay Agrawal
Brandon Amos
Shane T. Barratt
Stephen P. Boyd
Steven Diamond
Zico Kolter
88
660
0
28 Oct 2019
Conservative set valued fields, automatic differentiation, stochastic
  gradient method and deep learning
Conservative set valued fields, automatic differentiation, stochastic gradient method and deep learning
Jérôme Bolte
Edouard Pauwels
42
129
0
23 Sep 2019
Deep Declarative Networks: A New Hope
Deep Declarative Networks: A New Hope
Stephen Gould
Leonid Sigal
Dylan Campbell
AI4CE
68
105
0
11 Sep 2019
Deep Equilibrium Models
Deep Equilibrium Models
Shaojie Bai
J. Zico Kolter
V. Koltun
92
667
0
03 Sep 2019
Implicit Deep Learning
Implicit Deep Learning
L. Ghaoui
Fangda Gu
Bertrand Travacca
Armin Askari
Alicia Y. Tsai
AI4CE
59
180
0
17 Aug 2019
An Inertial Newton Algorithm for Deep Learning
An Inertial Newton Algorithm for Deep Learning
Camille Castera
Jérôme Bolte
Cédric Févotte
Edouard Pauwels
PINN
ODL
55
64
0
29 May 2019
Provably Correct Automatic Subdifferentiation for Qualified Programs
Provably Correct Automatic Subdifferentiation for Qualified Programs
Sham Kakade
Jason D. Lee
54
41
0
23 Sep 2018
Stochastic subgradient method converges on tame functions
Stochastic subgradient method converges on tame functions
Damek Davis
Dmitriy Drusvyatskiy
Sham Kakade
Jason D. Lee
59
251
0
20 Apr 2018
OptNet: Differentiable Optimization as a Layer in Neural Networks
OptNet: Differentiable Optimization as a Layer in Neural Networks
Brandon Amos
J. Zico Kolter
156
963
0
01 Mar 2017
TensorFlow: A system for large-scale machine learning
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNN
AI4CE
433
18,361
0
27 May 2016
Hyperparameter optimization with approximate gradient
Hyperparameter optimization with approximate gradient
Fabian Pedregosa
106
449
0
07 Feb 2016
The Lasso Problem and Uniqueness
The Lasso Problem and Uniqueness
Robert Tibshirani
201
553
0
01 Jun 2012
Complexity Analysis of the Lasso Regularization Path
Complexity Analysis of the Lasso Regularization Path
Julien Mairal
Bin Yu
218
129
0
01 May 2012
1