Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.04013
Cited By
The Future is Log-Gaussian: ResNets and Their Infinite-Depth-and-Width Limit at Initialization
7 June 2021
Mufan Li
Mihai Nica
Daniel M. Roy
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Future is Log-Gaussian: ResNets and Their Infinite-Depth-and-Width Limit at Initialization"
10 / 10 papers shown
Title
On the Neural Tangent Kernel of Equilibrium Models
Zhili Feng
J. Zico Kolter
20
6
0
21 Oct 2023
Mind the spikes: Benign overfitting of kernels and neural networks in fixed dimension
Moritz Haas
David Holzmüller
U. V. Luxburg
Ingo Steinwart
MLT
40
14
0
23 May 2023
Dynamics of Finite Width Kernel and Prediction Fluctuations in Mean Field Neural Networks
Blake Bordelon
Cengiz Pehlevan
MLT
40
29
0
06 Apr 2023
Width and Depth Limits Commute in Residual Networks
Soufiane Hayou
Greg Yang
47
14
0
01 Feb 2023
Meta-Principled Family of Hyperparameter Scaling Strategies
Sho Yaida
58
16
0
10 Oct 2022
Dynamical Isometry for Residual Networks
Advait Gadhikar
R. Burkholz
ODL
AI4CE
40
2
0
05 Oct 2022
Precise characterization of the prior predictive distribution of deep ReLU networks
Lorenzo Noci
Gregor Bachmann
Kevin Roth
Sebastian Nowozin
Thomas Hofmann
BDL
UQCV
29
32
0
11 Jun 2021
Stable ResNet
Soufiane Hayou
Eugenio Clerico
Bo He
George Deligiannidis
Arnaud Doucet
Judith Rousseau
ODL
SSeg
46
51
0
24 Oct 2020
Deep Networks and the Multiple Manifold Problem
Sam Buchanan
D. Gilboa
John N. Wright
166
39
0
25 Aug 2020
Trainability and Accuracy of Neural Networks: An Interacting Particle System Approach
Grant M. Rotskoff
Eric Vanden-Eijnden
68
118
0
02 May 2018
1