ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.03538
  4. Cited By
End-to-end reconstruction meets data-driven regularization for inverse
  problems

End-to-end reconstruction meets data-driven regularization for inverse problems

7 June 2021
Subhadip Mukherjee
M. Carioni
Ozan Oktem
Carola-Bibiane Schönlieb
ArXivPDFHTML

Papers citing "End-to-end reconstruction meets data-driven regularization for inverse problems"

10 / 10 papers shown
Title
CoRRECT: A Deep Unfolding Framework for Motion-Corrected Quantitative R2* Mapping
CoRRECT: A Deep Unfolding Framework for Motion-Corrected Quantitative R2* Mapping
Xiaojian Xu
Weijie Gan
Satya V. V. N. Kothapalli
D. Yablonskiy
Ulugbek S. Kamilov
MedIm
76
5
0
21 Feb 2025
Unsupervised Training of Convex Regularizers using Maximum Likelihood Estimation
Unsupervised Training of Convex Regularizers using Maximum Likelihood Estimation
Hongwei Tan
Ziruo Cai
Marcelo Pereyra
Subhadip Mukherjee
Junqi Tang
Carola-Bibiane Schönlieb
SSL
70
1
0
08 Apr 2024
What's in a Prior? Learned Proximal Networks for Inverse Problems
What's in a Prior? Learned Proximal Networks for Inverse Problems
Zhenghan Fang
Sam Buchanan
Jeremias Sulam
31
11
0
22 Oct 2023
A new method for determining Wasserstein 1 optimal transport maps from
  Kantorovich potentials, with deep learning applications
A new method for determining Wasserstein 1 optimal transport maps from Kantorovich potentials, with deep learning applications
Tristan Milne
Étienne Bilocq
A. Nachman
OT
27
3
0
02 Nov 2022
Estimating a potential without the agony of the partition function
Estimating a potential without the agony of the partition function
E. Haber
Moshe Eliasof
L. Tenorio
33
2
0
19 Aug 2022
Stochastic Primal-Dual Deep Unrolling
Stochastic Primal-Dual Deep Unrolling
Junqi Tang
Subhadip Mukherjee
Carola-Bibiane Schönlieb
24
4
0
19 Oct 2021
Deep Bayesian inference for seismic imaging with tasks
Deep Bayesian inference for seismic imaging with tasks
Ali Siahkoohi
G. Rizzuti
Felix J. Herrmann
BDL
UQCV
40
21
0
10 Oct 2021
Deep Unfolding Network for Image Super-Resolution
Deep Unfolding Network for Image Super-Resolution
Kaixuan Zhang
Luc Van Gool
Radu Timofte
SupR
116
539
0
23 Mar 2020
Wasserstein GANs for MR Imaging: from Paired to Unpaired Training
Wasserstein GANs for MR Imaging: from Paired to Unpaired Training
Ke Lei
Morteza Mardani
John M. Pauly
S. Vasanawala
GAN
MedIm
38
64
0
15 Oct 2019
Regularization by Denoising: Clarifications and New Interpretations
Regularization by Denoising: Clarifications and New Interpretations
E. T. Reehorst
Philip Schniter
56
214
0
06 Jun 2018
1