Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.03538
Cited By
End-to-end reconstruction meets data-driven regularization for inverse problems
7 June 2021
Subhadip Mukherjee
M. Carioni
Ozan Oktem
Carola-Bibiane Schönlieb
Re-assign community
ArXiv
PDF
HTML
Papers citing
"End-to-end reconstruction meets data-driven regularization for inverse problems"
10 / 10 papers shown
Title
CoRRECT: A Deep Unfolding Framework for Motion-Corrected Quantitative R2* Mapping
Xiaojian Xu
Weijie Gan
Satya V. V. N. Kothapalli
D. Yablonskiy
Ulugbek S. Kamilov
MedIm
76
5
0
21 Feb 2025
Unsupervised Training of Convex Regularizers using Maximum Likelihood Estimation
Hongwei Tan
Ziruo Cai
Marcelo Pereyra
Subhadip Mukherjee
Junqi Tang
Carola-Bibiane Schönlieb
SSL
70
1
0
08 Apr 2024
What's in a Prior? Learned Proximal Networks for Inverse Problems
Zhenghan Fang
Sam Buchanan
Jeremias Sulam
31
11
0
22 Oct 2023
A new method for determining Wasserstein 1 optimal transport maps from Kantorovich potentials, with deep learning applications
Tristan Milne
Étienne Bilocq
A. Nachman
OT
27
3
0
02 Nov 2022
Estimating a potential without the agony of the partition function
E. Haber
Moshe Eliasof
L. Tenorio
33
2
0
19 Aug 2022
Stochastic Primal-Dual Deep Unrolling
Junqi Tang
Subhadip Mukherjee
Carola-Bibiane Schönlieb
24
4
0
19 Oct 2021
Deep Bayesian inference for seismic imaging with tasks
Ali Siahkoohi
G. Rizzuti
Felix J. Herrmann
BDL
UQCV
40
21
0
10 Oct 2021
Deep Unfolding Network for Image Super-Resolution
Kaixuan Zhang
Luc Van Gool
Radu Timofte
SupR
116
539
0
23 Mar 2020
Wasserstein GANs for MR Imaging: from Paired to Unpaired Training
Ke Lei
Morteza Mardani
John M. Pauly
S. Vasanawala
GAN
MedIm
38
64
0
15 Oct 2019
Regularization by Denoising: Clarifications and New Interpretations
E. T. Reehorst
Philip Schniter
56
214
0
06 Jun 2018
1