Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.03412
Cited By
Resolution learning in deep convolutional networks using scale-space theory
7 June 2021
Silvia L.Pintea
Nergis Tomen
Stanley F. Goes
Marco Loog
J. C. V. Gemert
SupR
SSL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Resolution learning in deep convolutional networks using scale-space theory"
25 / 25 papers shown
Title
Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations
Andrzej Perzanowski
Tony Lindeberg
47
1
0
17 Sep 2024
Scaling Continuous Kernels with Sparse Fourier Domain Learning
Clayton A. Harper
Luke Wood
Peter Gerstoft
Eric C. Larson
26
0
0
15 Sep 2024
Approximation properties relative to continuous scale space for hybrid discretizations of Gaussian derivative operators
Tony Lindeberg
34
2
0
08 May 2024
Deep Continuous Networks
Nergis Tomen
S. Pintea
J. C. V. Gemert
92
14
0
02 Feb 2024
Discrete approximations of Gaussian smoothing and Gaussian derivatives
Tony Lindeberg
24
12
0
19 Nov 2023
As large as it gets: Learning infinitely large Filters via Neural Implicit Functions in the Fourier Domain
Julia Grabinski
J. Keuper
M. Keuper
21
6
0
19 Jul 2023
Balanced Mixture of SuperNets for Learning the CNN Pooling Architecture
Mehraveh Javan
Matthew Toews
M. Pedersoli
31
1
0
21 Jun 2023
Dilated Convolution with Learnable Spacings: beyond bilinear interpolation
Ismail Khalfaoui-Hassani
Thomas Pellegrini
T. Masquelier
16
3
0
01 Jun 2023
Rotation-Scale Equivariant Steerable Filters
Yi-Lun Yang
S. Dasmahapatra
S. Mahmoodi
19
3
0
10 Apr 2023
Scale-Equivariant UNet for Histopathology Image Segmentation
Yi-Lun Yang
S. Dasmahapatra
S. Mahmoodi
22
11
0
10 Apr 2023
Covariance properties under natural image transformations for the generalized Gaussian derivative model for visual receptive fields
T. Lindeberg
21
11
0
17 Mar 2023
Scale-aware neural calibration for wide swath altimetry observations
Q. Febvre
C. Ubelmann
Julien Le Sommer
Ronan Fablet
16
4
0
09 Feb 2023
Dynamic Sparse Network for Time Series Classification: Learning What to "see''
Qiao Xiao
Boqian Wu
Yu Zhang
Shiwei Liu
Mykola Pechenizkiy
Elena Mocanu
D. Mocanu
AI4TS
35
28
0
19 Dec 2022
Receptive Field Refinement for Convolutional Neural Networks Reliably Improves Predictive Performance
Mats L. Richter
C. Pal
19
3
0
26 Nov 2022
Towards Multi-spatiotemporal-scale Generalized PDE Modeling
Jayesh K. Gupta
Johannes Brandstetter
AI4CE
53
117
0
30 Sep 2022
Designing with Non-Finite Output Dimension via Fourier Coefficients of Neural Waveforms
Jonathan S. Kent
17
0
0
17 Aug 2022
Fully trainable Gaussian derivative convolutional layer
Valentin Penaud-Polge
Santiago Velasco-Forero
Jesús Angulo
19
9
0
18 Jul 2022
Efficient Representation Learning via Adaptive Context Pooling
Chen Huang
Walter A. Talbott
Navdeep Jaitly
J. Susskind
22
6
0
05 Jul 2022
Generative Modelling With Inverse Heat Dissipation
Severi Rissanen
Markus Heinonen
Arno Solin
DiffM
11
108
0
21 Jun 2022
Pooling Revisited: Your Receptive Field is Suboptimal
Dong-Hwan Jang
Sanghyeok Chu
Joonhyuk Kim
Bohyung Han
22
11
0
30 May 2022
Dilated convolution with learnable spacings
Ismail Khalfaoui-Hassani
Thomas Pellegrini
T. Masquelier
8
31
0
07 Dec 2021
Frequency learning for structured CNN filters with Gaussian fractional derivatives
Nikhil Saldanha
S. Pintea
J. C. V. Gemert
Nergis Tomen
22
7
0
12 Nov 2021
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes
David W. Romero
Robert-Jan Bruintjes
Jakub M. Tomczak
Erik J. Bekkers
Mark Hoogendoorn
J. C. V. Gemert
80
82
0
15 Oct 2021
Learning Dynamic Routing for Semantic Segmentation
Yanwei Li
Lin Song
Yukang Chen
Zeming Li
X. Zhang
Xingang Wang
Jian-jun Sun
SSeg
85
163
0
23 Mar 2020
Omni-Scale CNNs: a simple and effective kernel size configuration for time series classification
Wensi Tang
Guodong Long
Lu Liu
Tianyi Zhou
Michael Blumenstein
Jing Jiang
AI4TS
16
99
0
24 Feb 2020
1