Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.03408
Cited By
Antipodes of Label Differential Privacy: PATE and ALIBI
7 June 2021
Mani Malek
Ilya Mironov
Karthik Prasad
I. Shilov
Florian Tramèr
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Antipodes of Label Differential Privacy: PATE and ALIBI"
22 / 22 papers shown
Title
Guarding the Privacy of Label-Only Access to Neural Network Classifiers via iDP Verification
Anan Kabaha
Dana Drachsler-Cohen
AAML
48
0
0
23 Feb 2025
Privacy-Preserving Student Learning with Differentially Private Data-Free Distillation
Bochao Liu
Jianghu Lu
Pengju Wang
Junjie Zhang
Dan Zeng
Zhenxing Qian
Shiming Ge
25
1
0
19 Sep 2024
Retraining with Predicted Hard Labels Provably Increases Model Accuracy
Rudrajit Das
Inderjit S Dhillon
Alessandro Epasto
Adel Javanmard
Jieming Mao
Vahab Mirrokni
Sujay Sanghavi
Peilin Zhong
50
1
0
17 Jun 2024
Is poisoning a real threat to LLM alignment? Maybe more so than you think
Pankayaraj Pathmanathan
Souradip Chakraborty
Xiangyu Liu
Yongyuan Liang
Furong Huang
AAML
43
13
0
17 Jun 2024
Locally Private Estimation with Public Features
Yuheng Ma
Ke Jia
Hanfang Yang
42
3
0
22 May 2024
Training Differentially Private Ad Prediction Models with Semi-Sensitive Features
Lynn Chua
Qiliang Cui
Badih Ghazi
Charlie Harrison
Pritish Kamath
...
Pasin Manurangsi
Krishnagiri Narra
Amer Sinha
A. Varadarajan
Chiyuan Zhang
AAML
41
5
0
26 Jan 2024
Label Differential Privacy via Aggregation
Anand Brahmbhatt
Rishi Saket
Shreyas Havaldar
Anshul Nasery
A. Raghuveer
45
0
0
16 Oct 2023
A Note On Interpreting Canary Exposure
Matthew Jagielski
20
4
0
31 May 2023
How to DP-fy ML: A Practical Guide to Machine Learning with Differential Privacy
Natalia Ponomareva
Hussein Hazimeh
Alexey Kurakin
Zheng Xu
Carson E. Denison
H. B. McMahan
Sergei Vassilvitskii
Steve Chien
Abhradeep Thakurta
94
167
0
01 Mar 2023
SoK: Let the Privacy Games Begin! A Unified Treatment of Data Inference Privacy in Machine Learning
A. Salem
Giovanni Cherubin
David E. Evans
Boris Köpf
Andrew J. Paverd
Anshuman Suri
Shruti Tople
Santiago Zanella Béguelin
47
35
0
21 Dec 2022
Private Ad Modeling with DP-SGD
Carson E. Denison
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
Krishnagiri Narra
Amer Sinha
A. Varadarajan
Chiyuan Zhang
32
14
0
21 Nov 2022
In Differential Privacy, There is Truth: On Vote Leakage in Ensemble Private Learning
Jiaqi Wang
R. Schuster
Ilia Shumailov
David Lie
Nicolas Papernot
FedML
33
3
0
22 Sep 2022
Improving Privacy-Preserving Vertical Federated Learning by Efficient Communication with ADMM
Chulin Xie
Pin-Yu Chen
Qinbin Li
Arash Nourian
Ce Zhang
Bo Li
FedML
30
16
0
20 Jul 2022
Measuring Forgetting of Memorized Training Examples
Matthew Jagielski
Om Thakkar
Florian Tramèr
Daphne Ippolito
Katherine Lee
...
Eric Wallace
Shuang Song
Abhradeep Thakurta
Nicolas Papernot
Chiyuan Zhang
TDI
54
102
0
30 Jun 2022
Bayesian Estimation of Differential Privacy
Santiago Zanella Béguelin
Lukas Wutschitz
Shruti Tople
A. Salem
Victor Rühle
Andrew J. Paverd
Mohammad Naseri
Boris Köpf
Daniel Jones
17
36
0
10 Jun 2022
FEL: High Capacity Learning for Recommendation and Ranking via Federated Ensemble Learning
Meisam Hejazinia
Dzmitry Huba
Ilias Leontiadis
Kiwan Maeng
Mani Malek
Luca Melis
Ilya Mironov
Milad Nasr
Kaikai Wang
Carole-Jean Wu
FedML
9
5
0
07 Jun 2022
Synthetic Data -- what, why and how?
James Jordon
Lukasz Szpruch
F. Houssiau
M. Bottarelli
Giovanni Cherubin
Carsten Maple
Samuel N. Cohen
Adrian Weller
40
109
0
06 May 2022
Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets
Florian Tramèr
Reza Shokri
Ayrton San Joaquin
Hoang Minh Le
Matthew Jagielski
Sanghyun Hong
Nicholas Carlini
MIACV
36
107
0
31 Mar 2022
Does Label Differential Privacy Prevent Label Inference Attacks?
Ruihan Wu
Jinfu Zhou
Kilian Q. Weinberger
Chuan Guo
23
15
0
25 Feb 2022
Differential Privacy and Fairness in Decisions and Learning Tasks: A Survey
Ferdinando Fioretto
Cuong Tran
Pascal Van Hentenryck
Keyu Zhu
FaML
26
60
0
16 Feb 2022
Deep Learning with Label Differential Privacy
Badih Ghazi
Noah Golowich
Ravi Kumar
Pasin Manurangsi
Chiyuan Zhang
42
144
0
11 Feb 2021
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
290
1,815
0
14 Dec 2020
1