Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.03110
Cited By
Asymmetric Loss Functions for Learning with Noisy Labels
6 June 2021
Xiong Zhou
Xianming Liu
Junjun Jiang
Xin Gao
Xiangyang Ji
NoLa
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Asymmetric Loss Functions for Learning with Noisy Labels"
7 / 7 papers shown
Title
Enhanced Sample Selection with Confidence Tracking: Identifying Correctly Labeled yet Hard-to-Learn Samples in Noisy Data
Weiran Pan
Wei Wei
Feida Zhu
Yong Deng
NoLa
164
0
0
24 Apr 2025
An Embedding is Worth a Thousand Noisy Labels
Francesco Di Salvo
Sebastian Doerrich
Ines Rieger
Christian Ledig
NoLa
73
0
0
26 Aug 2024
SILT: Shadow-aware Iterative Label Tuning for Learning to Detect Shadows from Noisy Labels
Han Yang
Tianyu Wang
Xiao Hu
Chi-Wing Fu
NoLa
51
13
0
23 Aug 2023
Mitigating Label Noise through Data Ambiguation
Julian Lienen
Eyke Hüllermeier
NoLa
32
6
0
23 May 2023
Latent Class-Conditional Noise Model
Jiangchao Yao
Bo Han
Zhihan Zhou
Ya-Qin Zhang
Ivor W. Tsang
NoLa
BDL
33
8
0
19 Feb 2023
Learning with Noisy Labels via Sparse Regularization
Xiong Zhou
Xianming Liu
Chenyang Wang
Deming Zhai
Junjun Jiang
Xiangyang Ji
NoLa
26
51
0
31 Jul 2021
Curriculum Loss: Robust Learning and Generalization against Label Corruption
Yueming Lyu
Ivor W. Tsang
NoLa
61
172
0
24 May 2019
1