Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.03034
Cited By
Minibatch and Momentum Model-based Methods for Stochastic Weakly Convex Optimization
6 June 2021
Qi Deng
Wenzhi Gao
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Minibatch and Momentum Model-based Methods for Stochastic Weakly Convex Optimization"
23 / 23 papers shown
Title
Accelerated, Optimal, and Parallel: Some Results on Model-Based Stochastic Optimization
Karan N. Chadha
Gary Cheng
John C. Duchi
74
16
0
07 Jan 2021
Almost sure convergence rates for Stochastic Gradient Descent and Stochastic Heavy Ball
Othmane Sebbouh
Robert Mansel Gower
Aaron Defazio
41
22
0
14 Jun 2020
Stability of Stochastic Gradient Descent on Nonsmooth Convex Losses
Raef Bassily
Vitaly Feldman
Cristóbal Guzmán
Kunal Talwar
MLT
47
194
0
12 Jun 2020
Convergence of a Stochastic Gradient Method with Momentum for Non-Smooth Non-Convex Optimization
Vien V. Mai
M. Johansson
54
55
0
13 Feb 2020
Complexity of Finding Stationary Points of Nonsmooth Nonconvex Functions
J.N. Zhang
Hongzhou Lin
Stefanie Jegelka
Ali Jadbabaie
S. Sra
42
44
0
10 Feb 2020
Understanding the Role of Momentum in Stochastic Gradient Methods
Igor Gitman
Hunter Lang
Pengchuan Zhang
Lin Xiao
50
95
0
30 Oct 2019
Generalized Momentum-Based Methods: A Hamiltonian Perspective
Jelena Diakonikolas
Michael I. Jordan
55
57
0
02 Jun 2019
Low-rank matrix recovery with composite optimization: good conditioning and rapid convergence
Vasileios Charisopoulos
Yudong Chen
Damek Davis
Mateo Díaz
Lijun Ding
Dmitriy Drusvyatskiy
56
85
0
22 Apr 2019
The importance of better models in stochastic optimization
Hilal Asi
John C. Duchi
38
73
0
20 Mar 2019
Deep Frank-Wolfe For Neural Network Optimization
Leonard Berrada
Andrew Zisserman
M. P. Kumar
ODL
30
40
0
19 Nov 2018
Stochastic (Approximate) Proximal Point Methods: Convergence, Optimality, and Adaptivity
Hilal Asi
John C. Duchi
120
124
0
12 Oct 2018
A Unified Analysis of Stochastic Momentum Methods for Deep Learning
Yan Yan
Tianbao Yang
Zhe Li
Qihang Lin
Yi Yang
33
119
0
30 Aug 2018
Stochastic model-based minimization of weakly convex functions
Damek Davis
Dmitriy Drusvyatskiy
72
376
0
17 Mar 2018
Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods
Nicolas Loizou
Peter Richtárik
62
201
0
27 Dec 2017
Proximal Backpropagation
Thomas Frerix
Thomas Möllenhoff
Michael Möller
Daniel Cremers
46
31
0
14 Jun 2017
Practical Gauss-Newton Optimisation for Deep Learning
Aleksandar Botev
H. Ritter
David Barber
ODL
49
231
0
12 Jun 2017
Solving (most) of a set of quadratic equalities: Composite optimization for robust phase retrieval
John C. Duchi
Feng Ruan
47
166
0
05 May 2017
Stochastic Methods for Composite and Weakly Convex Optimization Problems
John C. Duchi
Feng Ruan
32
127
0
24 Mar 2017
Memory and Communication Efficient Distributed Stochastic Optimization with Minibatch-Prox
Jialei Wang
Weiran Wang
Nathan Srebro
82
54
0
21 Feb 2017
Train faster, generalize better: Stability of stochastic gradient descent
Moritz Hardt
Benjamin Recht
Y. Singer
111
1,238
0
03 Sep 2015
Distributed Mini-Batch SDCA
Martin Takáč
Peter Richtárik
Nathan Srebro
64
50
0
29 Jul 2015
Stochastic First- and Zeroth-order Methods for Nonconvex Stochastic Programming
Saeed Ghadimi
Guanghui Lan
ODL
120
1,548
0
22 Sep 2013
Optimal Distributed Online Prediction using Mini-Batches
O. Dekel
Ran Gilad-Bachrach
Ohad Shamir
Lin Xiao
257
685
0
07 Dec 2010
1