ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.03031
  4. Cited By
Do Grammatical Error Correction Models Realize Grammatical
  Generalization?

Do Grammatical Error Correction Models Realize Grammatical Generalization?

6 June 2021
Masato Mita
Hitomi Yanaka
ArXivPDFHTML

Papers citing "Do Grammatical Error Correction Models Realize Grammatical Generalization?"

17 / 17 papers shown
Title
A Self-Refinement Strategy for Noise Reduction in Grammatical Error
  Correction
A Self-Refinement Strategy for Noise Reduction in Grammatical Error Correction
Masato Mita
Shun Kiyono
Masahiro Kaneko
Jun Suzuki
Kentaro Inui
55
14
0
07 Oct 2020
GECToR -- Grammatical Error Correction: Tag, Not Rewrite
GECToR -- Grammatical Error Correction: Tag, Not Rewrite
Kostiantyn Omelianchuk
Vitaliy Atrasevych
Artem Chernodub
Oleksandr Skurzhanskyi
60
314
0
26 May 2020
Encoder-Decoder Models Can Benefit from Pre-trained Masked Language
  Models in Grammatical Error Correction
Encoder-Decoder Models Can Benefit from Pre-trained Masked Language Models in Grammatical Error Correction
Masahiro Kaneko
Masato Mita
Shun Kiyono
Jun Suzuki
Kentaro Inui
80
146
0
03 May 2020
Do Neural Models Learn Systematicity of Monotonicity Inference in
  Natural Language?
Do Neural Models Learn Systematicity of Monotonicity Inference in Natural Language?
Hitomi Yanaka
K. Mineshima
D. Bekki
Kentaro Inui
NAI
42
51
0
30 Apr 2020
An Empirical Study of Incorporating Pseudo Data into Grammatical Error
  Correction
An Empirical Study of Incorporating Pseudo Data into Grammatical Error Correction
Shun Kiyono
Jun Suzuki
Masato Mita
Tomoya Mizumoto
Kentaro Inui
71
150
0
02 Sep 2019
Cross-Corpora Evaluation and Analysis of Grammatical Error Correction
  Models --- Is Single-Corpus Evaluation Enough?
Cross-Corpora Evaluation and Analysis of Grammatical Error Correction Models --- Is Single-Corpus Evaluation Enough?
Masato Mita
Tomoya Mizumoto
Masahiro Kaneko
Ryo Nagata
Kentaro Inui
ELM
51
19
0
05 Apr 2019
fairseq: A Fast, Extensible Toolkit for Sequence Modeling
fairseq: A Fast, Extensible Toolkit for Sequence Modeling
Myle Ott
Sergey Edunov
Alexei Baevski
Angela Fan
Sam Gross
Nathan Ng
David Grangier
Michael Auli
VLM
FaML
95
3,150
0
01 Apr 2019
Improving Grammatical Error Correction via Pre-Training a Copy-Augmented
  Architecture with Unlabeled Data
Improving Grammatical Error Correction via Pre-Training a Copy-Augmented Architecture with Unlabeled Data
Wei Zhao
Liang Wang
Kewei Shen
Ruoyu Jia
Jingming Liu
67
214
0
01 Mar 2019
Do RNNs learn human-like abstract word order preferences?
Do RNNs learn human-like abstract word order preferences?
Ainesh Bakshi
R. Levy
45
27
0
05 Nov 2018
Targeted Syntactic Evaluation of Language Models
Targeted Syntactic Evaluation of Language Models
Rebecca Marvin
Tal Linzen
72
415
0
27 Aug 2018
Near Human-Level Performance in Grammatical Error Correction with Hybrid
  Machine Translation
Near Human-Level Performance in Grammatical Error Correction with Hybrid Machine Translation
Roman Grundkiewicz
Marcin Junczys-Dowmunt
53
97
0
16 Apr 2018
Approaching Neural Grammatical Error Correction as a Low-Resource
  Machine Translation Task
Approaching Neural Grammatical Error Correction as a Low-Resource Machine Translation Task
Marcin Junczys-Dowmunt
Roman Grundkiewicz
Shubha Guha
Kenneth Heafield
80
193
0
16 Apr 2018
Colorless green recurrent networks dream hierarchically
Colorless green recurrent networks dream hierarchically
Kristina Gulordava
Piotr Bojanowski
Edouard Grave
Tal Linzen
Marco Baroni
82
504
0
29 Mar 2018
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
660
131,414
0
12 Jun 2017
Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies
Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies
Tal Linzen
Emmanuel Dupoux
Yoav Goldberg
101
903
0
04 Nov 2016
Rethinking the Inception Architecture for Computer Vision
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
872
27,350
0
02 Dec 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.7K
150,006
0
22 Dec 2014
1