Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.02890
Cited By
Can Subnetwork Structure be the Key to Out-of-Distribution Generalization?
5 June 2021
Dinghuai Zhang
Kartik Ahuja
Yilun Xu
Yisen Wang
Aaron Courville
OOD
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Can Subnetwork Structure be the Key to Out-of-Distribution Generalization?"
50 / 64 papers shown
Title
Uncovering Intermediate Variables in Transformers using Circuit Probing
Michael A. Lepori
Thomas Serre
Ellie Pavlick
120
7
0
07 Nov 2023
Diverse Target and Contribution Scheduling for Domain Generalization
Shaocong Long
Qianyu Zhou
Soham Dan
Lizhuang Ma
Yuan Luo
132
8
0
28 Sep 2023
Counterfactual Generative Networks
Axel Sauer
Andreas Geiger
OOD
BDL
CML
90
126
0
15 Jan 2021
Does Invariant Risk Minimization Capture Invariance?
Pritish Kamath
Akilesh Tangella
Danica J. Sutherland
Nathan Srebro
OOD
261
128
0
04 Jan 2021
WILDS: A Benchmark of in-the-Wild Distribution Shifts
Pang Wei Koh
Shiori Sagawa
Henrik Marklund
Sang Michael Xie
Marvin Zhang
...
A. Kundaje
Emma Pierson
Sergey Levine
Chelsea Finn
Percy Liang
OOD
183
1,434
0
14 Dec 2020
In-N-Out: Pre-Training and Self-Training using Auxiliary Information for Out-of-Distribution Robustness
Sang Michael Xie
Ananya Kumar
Robbie Jones
Fereshte Khani
Tengyu Ma
Percy Liang
OOD
198
62
0
08 Dec 2020
Removing Spurious Features can Hurt Accuracy and Affect Groups Disproportionately
Fereshte Khani
Percy Liang
FaML
59
66
0
07 Dec 2020
Gradient Starvation: A Learning Proclivity in Neural Networks
Mohammad Pezeshki
Sekouba Kaba
Yoshua Bengio
Aaron Courville
Doina Precup
Guillaume Lajoie
MLT
128
266
0
18 Nov 2020
Empirical or Invariant Risk Minimization? A Sample Complexity Perspective
Kartik Ahuja
Jun Wang
Amit Dhurandhar
Karthikeyan Shanmugam
Kush R. Varshney
OOD
83
79
0
30 Oct 2020
Understanding the Failure Modes of Out-of-Distribution Generalization
Vaishnavh Nagarajan
Anders Andreassen
Behnam Neyshabur
OOD
OODD
59
177
0
29 Oct 2020
The Risks of Invariant Risk Minimization
Elan Rosenfeld
Pradeep Ravikumar
Andrej Risteski
OOD
80
312
0
12 Oct 2020
Characterising Bias in Compressed Models
Sara Hooker
Nyalleng Moorosi
Gregory Clark
Samy Bengio
Emily L. Denton
67
185
0
06 Oct 2020
Are Neural Nets Modular? Inspecting Functional Modularity Through Differentiable Weight Masks
Róbert Csordás
Sjoerd van Steenkiste
Jürgen Schmidhuber
91
95
0
05 Oct 2020
Sanity-Checking Pruning Methods: Random Tickets can Win the Jackpot
Jingtong Su
Yihang Chen
Tianle Cai
Tianhao Wu
Ruiqi Gao
Liwei Wang
Jason D. Lee
56
86
0
22 Sep 2020
Pruning Neural Networks at Initialization: Why are We Missing the Mark?
Jonathan Frankle
Gintare Karolina Dziugaite
Daniel M. Roy
Michael Carbin
65
240
0
18 Sep 2020
Learning explanations that are hard to vary
Giambattista Parascandolo
Alexander Neitz
Antonio Orvieto
Luigi Gresele
Bernhard Schölkopf
FAtt
63
185
0
01 Sep 2020
Informative Dropout for Robust Representation Learning: A Shape-bias Perspective
Baifeng Shi
Dinghuai Zhang
Qi Dai
Zhanxing Zhu
Yadong Mu
Jingdong Wang
OOD
58
112
0
10 Aug 2020
Learning from Failure: Training Debiased Classifier from Biased Classifier
J. Nam
Hyuntak Cha
SungSoo Ahn
Jaeho Lee
Jinwoo Shin
63
149
0
06 Jul 2020
In Search of Lost Domain Generalization
Ishaan Gulrajani
David Lopez-Paz
OOD
79
1,149
0
02 Jul 2020
The Pitfalls of Simplicity Bias in Neural Networks
Harshay Shah
Kaustav Tamuly
Aditi Raghunathan
Prateek Jain
Praneeth Netrapalli
AAML
67
361
0
13 Jun 2020
Risk Variance Penalization
Chuanlong Xie
Haotian Ye
Fei Chen
Yue Liu
Rui Sun
Zhenguo Li
152
33
0
13 Jun 2020
Enforcing Predictive Invariance across Structured Biomedical Domains
Wengong Jin
Regina Barzilay
Tommi Jaakkola
OOD
59
30
0
06 Jun 2020
An Analysis of the Adaptation Speed of Causal Models
Rémi Le Priol
Reza Babanezhad Harikandeh
Yoshua Bengio
Simon Lacoste-Julien
CML
41
14
0
18 May 2020
An Investigation of Why Overparameterization Exacerbates Spurious Correlations
Shiori Sagawa
Aditi Raghunathan
Pang Wei Koh
Percy Liang
188
381
0
09 May 2020
Shortcut Learning in Deep Neural Networks
Robert Geirhos
J. Jacobsen
Claudio Michaelis
R. Zemel
Wieland Brendel
Matthias Bethge
Felix Wichmann
209
2,052
0
16 Apr 2020
Invariant Rationalization
Shiyu Chang
Yang Zhang
Mo Yu
Tommi Jaakkola
235
206
0
22 Mar 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
307
936
0
02 Mar 2020
Invariant Risk Minimization Games
Kartik Ahuja
Karthikeyan Shanmugam
Kush R. Varshney
Amit Dhurandhar
OOD
65
250
0
11 Feb 2020
Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization
Shiori Sagawa
Pang Wei Koh
Tatsunori B. Hashimoto
Percy Liang
OOD
108
1,243
0
20 Nov 2019
What Do Compressed Deep Neural Networks Forget?
Sara Hooker
Aaron Courville
Gregory Clark
Yann N. Dauphin
Andrea Frome
87
185
0
13 Nov 2019
Learning De-biased Representations with Biased Representations
Hyojin Bahng
Sanghyuk Chun
Sangdoo Yun
Jaegul Choo
Seong Joon Oh
OOD
381
281
0
07 Oct 2019
Recurrent Independent Mechanisms
Anirudh Goyal
Alex Lamb
Jordan Hoffmann
Shagun Sodhani
Sergey Levine
Yoshua Bengio
Bernhard Schölkopf
89
337
0
24 Sep 2019
Invariant Risk Minimization
Martín Arjovsky
Léon Bottou
Ishaan Gulrajani
David Lopez-Paz
OOD
192
2,229
0
05 Jul 2019
Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask
Hattie Zhou
Janice Lan
Rosanne Liu
J. Yosinski
UQCV
55
387
0
03 May 2019
Approximating CNNs with Bag-of-local-Features models works surprisingly well on ImageNet
Wieland Brendel
Matthias Bethge
SSL
FAtt
94
561
0
20 Mar 2019
Learning Robust Representations by Projecting Superficial Statistics Out
Haohan Wang
Zexue He
Zachary Chase Lipton
Eric Xing
OOD
70
235
0
02 Mar 2019
Parameter Efficient Training of Deep Convolutional Neural Networks by Dynamic Sparse Reparameterization
Hesham Mostafa
Xin Wang
76
314
0
15 Feb 2019
A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms
Yoshua Bengio
T. Deleu
Nasim Rahaman
Nan Rosemary Ke
Sébastien Lachapelle
O. Bilaniuk
Anirudh Goyal
C. Pal
CML
OOD
107
334
0
30 Jan 2019
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
Robert Geirhos
Patricia Rubisch
Claudio Michaelis
Matthias Bethge
Felix Wichmann
Wieland Brendel
103
2,670
0
29 Nov 2018
Rethinking the Value of Network Pruning
Zhuang Liu
Mingjie Sun
Tinghui Zhou
Gao Huang
Trevor Darrell
36
1,470
0
11 Oct 2018
SNIP: Single-shot Network Pruning based on Connection Sensitivity
Namhoon Lee
Thalaiyasingam Ajanthan
Philip Torr
VLM
263
1,205
0
04 Oct 2018
Recognition in Terra Incognita
Sara Beery
Grant Van Horn
Pietro Perona
92
851
0
13 Jul 2018
Automatically Composing Representation Transformations as a Means for Generalization
Michael Chang
Abhishek Gupta
Sergey Levine
Thomas Griffiths
47
69
0
12 Jul 2018
Robustness May Be at Odds with Accuracy
Dimitris Tsipras
Shibani Santurkar
Logan Engstrom
Alexander Turner
Aleksander Madry
AAML
104
1,781
0
30 May 2018
Understanding Community Structure in Layered Neural Networks
C. Watanabe
Kaoru Hiramatsu
K. Kashino
123
22
0
13 Apr 2018
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle
Michael Carbin
235
3,473
0
09 Mar 2018
Learning Sparse Neural Networks through
L
0
L_0
L
0
Regularization
Christos Louizos
Max Welling
Diederik P. Kingma
433
1,144
0
04 Dec 2017
PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning
Arun Mallya
Svetlana Lazebnik
CLL
105
1,301
0
15 Nov 2017
The Implicit Bias of Gradient Descent on Separable Data
Daniel Soudry
Elad Hoffer
Mor Shpigel Nacson
Suriya Gunasekar
Nathan Srebro
158
917
0
27 Oct 2017
To prune, or not to prune: exploring the efficacy of pruning for model compression
Michael Zhu
Suyog Gupta
194
1,278
0
05 Oct 2017
1
2
Next