Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.02666
Cited By
Counterfactual Explanations Can Be Manipulated
4 June 2021
Dylan Slack
Sophie Hilgard
Himabindu Lakkaraju
Sameer Singh
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Counterfactual Explanations Can Be Manipulated"
39 / 39 papers shown
Title
A New Approach to Backtracking Counterfactual Explanations: A Unified Causal Framework for Efficient Model Interpretability
Pouria Fatemi
Ehsan Sharifian
Mohammad Hossein Yassaee
45
0
0
05 May 2025
Explanations as Bias Detectors: A Critical Study of Local Post-hoc XAI Methods for Fairness Exploration
Vasiliki Papanikou
Danae Pla Karidi
E. Pitoura
Emmanouil Panagiotou
Eirini Ntoutsi
88
0
0
01 May 2025
When Counterfactual Reasoning Fails: Chaos and Real-World Complexity
Yahya Aalaila
Gerrit Großmann
Sumantrak Mukherjee
Jonas Wahl
Sebastian Vollmer
CML
LRM
71
0
0
31 Mar 2025
Archetypal SAE: Adaptive and Stable Dictionary Learning for Concept Extraction in Large Vision Models
Thomas Fel
Ekdeep Singh Lubana
Jacob S. Prince
M. Kowal
Victor Boutin
Isabel Papadimitriou
Binxu Wang
Martin Wattenberg
Demba Ba
Talia Konkle
18
3
0
18 Feb 2025
ExpProof : Operationalizing Explanations for Confidential Models with ZKPs
Chhavi Yadav
Evan Monroe Laufer
Dan Boneh
Kamalika Chaudhuri
100
0
0
06 Feb 2025
Robust Counterfactual Explanations under Model Multiplicity Using Multi-Objective Optimization
Keita Kinjo
65
1
0
10 Jan 2025
Feature Responsiveness Scores: Model-Agnostic Explanations for Recourse
Seung Hyun Cheon
Anneke Wernerfelt
Sorelle A. Friedler
Berk Ustun
FaML
FAtt
68
1
0
29 Oct 2024
S-CFE: Simple Counterfactual Explanations
Shpresim Sadiku
Moritz Wagner
Sai Ganesh Nagarajan
Sebastian Pokutta
59
0
0
21 Oct 2024
Time Can Invalidate Algorithmic Recourse
Giovanni De Toni
Stefano Teso
Bruno Lepri
Andrea Passerini
49
0
0
10 Oct 2024
Mapping the Potential of Explainable AI for Fairness Along the AI Lifecycle
Luca Deck
Astrid Schomacker
Timo Speith
Jakob Schöffer
Lena Kästner
Niklas Kühl
48
4
0
29 Apr 2024
Why You Should Not Trust Interpretations in Machine Learning: Adversarial Attacks on Partial Dependence Plots
Xi Xin
Giles Hooker
Fei Huang
AAML
51
7
0
29 Apr 2024
On the Challenges and Opportunities in Generative AI
Laura Manduchi
Kushagra Pandey
Robert Bamler
Ryan Cotterell
Sina Daubener
...
F. Wenzel
Frank Wood
Stephan Mandt
Vincent Fortuin
Vincent Fortuin
63
18
0
28 Feb 2024
When Graph Neural Network Meets Causality: Opportunities, Methodologies and An Outlook
Wenzhao Jiang
Hao Liu
Hui Xiong
CML
AI4CE
56
2
0
19 Dec 2023
SoK: Unintended Interactions among Machine Learning Defenses and Risks
Vasisht Duddu
S. Szyller
Nadarajah Asokan
AAML
60
2
0
07 Dec 2023
Can AI Mitigate Human Perceptual Biases? A Pilot Study
Ross Geuy
Nate Rising
Tiancheng Shi
Meng-Ying Ling
Jian Chen
38
0
0
10 Oct 2023
Explaining Black-Box Models through Counterfactuals
Patrick Altmeyer
A. V. Deursen
Cynthia C. S. Liem
CML
LRM
53
2
0
14 Aug 2023
GLOBE-CE: A Translation-Based Approach for Global Counterfactual Explanations
Dan Ley
Saumitra Mishra
Daniele Magazzeni
LRM
56
16
0
26 May 2023
Algorithmic Recourse with Missing Values
Kentaro Kanamori
Takuya Takagi
Ken Kobayashi
Yuichi Ike
41
2
0
28 Apr 2023
Impact Of Explainable AI On Cognitive Load: Insights From An Empirical Study
L. Herm
26
22
0
18 Apr 2023
Explaining Groups of Instances Counterfactually for XAI: A Use Case, Algorithm and User Study for Group-Counterfactuals
Greta Warren
Markt. Keane
Christophe Guéret
Eoin Delaney
39
13
0
16 Mar 2023
"How to make them stay?" -- Diverse Counterfactual Explanations of Employee Attrition
André Artelt
Andreas Gregoriades
54
5
0
08 Mar 2023
GAM Coach: Towards Interactive and User-centered Algorithmic Recourse
Zijie J. Wang
J. W. Vaughan
R. Caruana
Duen Horng Chau
HAI
41
22
0
27 Feb 2023
Finding Regions of Counterfactual Explanations via Robust Optimization
Donato Maragno
Jannis Kurtz
Tabea E. Rober
Rob Goedhart
cS. .Ilker Birbil
D. Hertog
75
22
0
26 Jan 2023
Don't Lie to Me: Avoiding Malicious Explanations with STEALTH
Lauren Alvarez
Tim Menzies
54
2
0
25 Jan 2023
"Explain it in the Same Way!" -- Model-Agnostic Group Fairness of Counterfactual Explanations
André Artelt
Barbara Hammer
FaML
54
8
0
27 Nov 2022
Formalising the Robustness of Counterfactual Explanations for Neural Networks
Junqi Jiang
Francesco Leofante
Antonio Rago
Francesca Toni
AAML
34
27
0
31 Aug 2022
Inferring Sensitive Attributes from Model Explanations
Vasisht Duddu
A. Boutet
MIACV
SILM
33
17
0
21 Aug 2022
Global Counterfactual Explanations: Investigations, Implementations and Improvements
Dan Ley
Saumitra Mishra
Daniele Magazzeni
LRM
66
12
0
14 Apr 2022
Probabilistically Robust Recourse: Navigating the Trade-offs between Costs and Robustness in Algorithmic Recourse
Martin Pawelczyk
Teresa Datta
Johannes van-den-Heuvel
Gjergji Kasneci
Himabindu Lakkaraju
29
38
0
13 Mar 2022
Don't Lie to Me! Robust and Efficient Explainability with Verified Perturbation Analysis
Thomas Fel
Mélanie Ducoffe
David Vigouroux
Rémi Cadène
Mikael Capelle
C. Nicodeme
Thomas Serre
AAML
33
41
0
15 Feb 2022
Framework for Evaluating Faithfulness of Local Explanations
S. Dasgupta
Nave Frost
Michal Moshkovitz
FAtt
149
61
0
01 Feb 2022
Post-Hoc Explanations Fail to Achieve their Purpose in Adversarial Contexts
Sebastian Bordt
Michèle Finck
Eric Raidl
U. V. Luxburg
AILaw
69
78
0
25 Jan 2022
On the Robustness of Sparse Counterfactual Explanations to Adverse Perturbations
M. Virgolin
Saverio Fracaros
CML
41
36
0
22 Jan 2022
On the Adversarial Robustness of Causal Algorithmic Recourse
Ricardo Dominguez-Olmedo
Amir-Hossein Karimi
Bernhard Schölkopf
53
63
0
21 Dec 2021
Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions
Prateek Yadav
Peter Hase
Joey Tianyi Zhou
32
11
0
01 Nov 2021
A Survey on the Robustness of Feature Importance and Counterfactual Explanations
Saumitra Mishra
Sanghamitra Dutta
Jason Long
Daniele Magazzeni
AAML
27
57
0
30 Oct 2021
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan E. Hines
John P. Dickerson
Chirag Shah
CML
33
166
0
20 Oct 2020
Can I Trust My Fairness Metric? Assessing Fairness with Unlabeled Data and Bayesian Inference
Disi Ji
Padhraic Smyth
M. Steyvers
44
45
0
19 Oct 2020
On the Fairness of Causal Algorithmic Recourse
Julius von Kügelgen
Amir-Hossein Karimi
Umang Bhatt
Isabel Valera
Adrian Weller
Bernhard Schölkopf
FaML
82
85
0
13 Oct 2020
1