ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.02347
  4. Cited By
SE(3)-equivariant prediction of molecular wavefunctions and electronic
  densities
v1v2 (latest)

SE(3)-equivariant prediction of molecular wavefunctions and electronic densities

4 June 2021
Oliver T. Unke
Mihail Bogojeski
M. Gastegger
Mario Geiger
Tess E. Smidt
Klaus-Robert Muller
ArXiv (abs)PDFHTML

Papers citing "SE(3)-equivariant prediction of molecular wavefunctions and electronic densities"

42 / 42 papers shown
Title
High-order Equivariant Flow Matching for Density Functional Theory Hamiltonian Prediction
High-order Equivariant Flow Matching for Density Functional Theory Hamiltonian Prediction
Seongsu Kim
N. Kim
Dongwoo Kim
SungSoo Ahn
49
0
0
24 May 2025
How simple can you go? An off-the-shelf transformer approach to molecular dynamics
Max Eissler
Tim Korjakow
Stefan Ganscha
Oliver T. Unke
Klaus-Robert Müller
Stefan Gugler
127
2
0
03 Mar 2025
Learning with Exact Invariances in Polynomial Time
Learning with Exact Invariances in Polynomial Time
Ashkan Soleymani
B. Tahmasebi
Stefanie Jegelka
Patrick Jaillet
251
0
0
27 Feb 2025
Enhancing the Scalability and Applicability of Kohn-Sham Hamiltonians for Molecular Systems
Enhancing the Scalability and Applicability of Kohn-Sham Hamiltonians for Molecular Systems
Yunyang Li
Zaishuo Xia
Lin Huang
Xinran Wei
Han Yang
...
Zun Wang
Chang-Shu Liu
Jia Zhang
Jia Zhang
Mark B. Gerstein
161
3
0
26 Feb 2025
Learning local equivariant representations for quantum operators
Learning local equivariant representations for quantum operators
Zhanghao Zhouyin
Zixi Gan
MingKang Liu
S. K. Pandey
Linfeng Zhang
Qiangqiang Gu
214
5
0
28 Jan 2025
Equivariant Graph Network Approximations of High-Degree Polynomials for
  Force Field Prediction
Equivariant Graph Network Approximations of High-Degree Polynomials for Force Field Prediction
Zhao Xu
Haiyang Yu
Montgomery Bohde
Shuiwang Ji
89
2
0
06 Nov 2024
E3STO: Orbital Inspired SE(3)-Equivariant Molecular Representation for
  Electron Density Prediction
E3STO: Orbital Inspired SE(3)-Equivariant Molecular Representation for Electron Density Prediction
Ilan Mitnikov
Joseph Jacobson
90
0
0
08 Oct 2024
NeuralSCF: Neural network self-consistent fields for density functional
  theory
NeuralSCF: Neural network self-consistent fields for density functional theory
Feitong Song
Ji Feng
70
1
0
22 Jun 2024
Equivariance via Minimal Frame Averaging for More Symmetries and
  Efficiency
Equivariance via Minimal Frame Averaging for More Symmetries and Efficiency
Yuchao Lin
Jacob Helwig
Shurui Gui
Shuiwang Ji
99
11
0
11 Jun 2024
Equivariant Neural Tangent Kernels
Equivariant Neural Tangent Kernels
Philipp Misof
Pan Kessel
Jan E. Gerken
220
0
0
10 Jun 2024
Infusing Self-Consistency into Density Functional Theory Hamiltonian
  Prediction via Deep Equilibrium Models
Infusing Self-Consistency into Density Functional Theory Hamiltonian Prediction via Deep Equilibrium Models
Zun Wang
Chang-Shu Liu
Nianlong Zou
He Zhang
Xinran Wei
Lin Huang
Lijun Wu
Jia Zhang
76
3
0
06 Jun 2024
Multi-task learning for molecular electronic structure approaching
  coupled-cluster accuracy
Multi-task learning for molecular electronic structure approaching coupled-cluster accuracy
Hao Tang
Brian Xiao
Wenhao He
Pero Subasic
A. Harutyunyan
Yao Wang
Fang Liu
Haowei Xu
Ju Li
74
1
0
09 May 2024
Self-Consistency Training for Density-Functional-Theory Hamiltonian
  Prediction
Self-Consistency Training for Density-Functional-Theory Hamiltonian Prediction
He Zhang
Chang-Shu Liu
Zun Wang
Xinran Wei
Siyuan Liu
Nanning Zheng
Jia Zhang
Tie-Yan Liu
73
9
0
14 Mar 2024
Generalizing Denoising to Non-Equilibrium Structures Improves
  Equivariant Force Fields
Generalizing Denoising to Non-Equilibrium Structures Improves Equivariant Force Fields
Yi-Lun Liao
Tess E. Smidt
Abhishek Das
DiffMAI4CE
63
12
0
14 Mar 2024
Universal Machine Learning Kohn-Sham Hamiltonian for Materials
Universal Machine Learning Kohn-Sham Hamiltonian for Materials
Yang Zhong
Hongyu Yu
Ji-Hui Yang
Xingyu Guo
Hongjun Xiang
X. Gong
49
19
0
14 Feb 2024
Reducing the Cost of Quantum Chemical Data By Backpropagating Through
  Density Functional Theory
Reducing the Cost of Quantum Chemical Data By Backpropagating Through Density Functional Theory
Alexander Mathiasen
Hatem Helal
Paul Balanca
Adam Krzywaniak
Ali Parviz
Frederik Hvilshoj
Bla.zej Banaszewski
Carlo Luschi
Andrew William Fitzgibbon
74
5
0
06 Feb 2024
Manifold GCN: Diffusion-based Convolutional Neural Network for Manifold-valued Graphs
Manifold GCN: Diffusion-based Convolutional Neural Network for Manifold-valued Graphs
M. Hanik
Gabriele Steidl
C. V. Tycowicz
GNNMedIm
135
3
0
25 Jan 2024
Enabling Efficient Equivariant Operations in the Fourier Basis via Gaunt
  Tensor Products
Enabling Efficient Equivariant Operations in the Fourier Basis via Gaunt Tensor Products
Shengjie Luo
Tianlang Chen
Aditi S. Krishnapriyan
88
26
0
18 Jan 2024
Towards Harmonization of SO(3)-Equivariance and Expressiveness: a Hybrid
  Deep Learning Framework for Electronic-Structure Hamiltonian Prediction
Towards Harmonization of SO(3)-Equivariance and Expressiveness: a Hybrid Deep Learning Framework for Electronic-Structure Hamiltonian Prediction
Shi Yin
Xinyang Pan
Xudong Zhu
Tianyu Gao
Haochong Zhang
Feng Wu
Lixin He
93
2
0
01 Jan 2024
Electronic excited states from physically-constrained machine learning
Electronic excited states from physically-constrained machine learning
Edoardo Cignoni
Divya Suman
Jigyasa Nigam
Lorenzo Cupellini
B. Mennucci
Michele Ceriotti
63
17
0
01 Nov 2023
Equivariant Matrix Function Neural Networks
Equivariant Matrix Function Neural Networks
Ilyes Batatia
Lars L. Schaaf
Huajie Chen
Gábor Csányi
Christoph Ortner
Felix A. Faber
87
6
0
16 Oct 2023
Variational Monte Carlo on a Budget -- Fine-tuning pre-trained Neural
  Wavefunctions
Variational Monte Carlo on a Budget -- Fine-tuning pre-trained Neural Wavefunctions
Michael Scherbela
Leon Gerard
Philipp Grohs
68
7
0
15 Jul 2023
EquiformerV2: Improved Equivariant Transformer for Scaling to
  Higher-Degree Representations
EquiformerV2: Improved Equivariant Transformer for Scaling to Higher-Degree Representations
Yidong Liao
Brandon M. Wood
Abhishek Das
Tess E. Smidt
138
159
0
21 Jun 2023
QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules
QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules
Haiyang Yu
Meng Liu
Youzhi Luo
A. Strasser
X. Qian
Xiaoning Qian
Shuiwang Ji
92
24
0
15 Jun 2023
Efficient and Equivariant Graph Networks for Predicting Quantum
  Hamiltonian
Efficient and Equivariant Graph Networks for Predicting Quantum Hamiltonian
Haiyang Yu
Zhao Xu
X. Qian
Xiaoning Qian
Shuiwang Ji
109
30
0
08 Jun 2023
Equivariant Neural Networks for Spin Dynamics Simulations of Itinerant
  Magnets
Equivariant Neural Networks for Spin Dynamics Simulations of Itinerant Magnets
Y. Miyazaki
29
4
0
05 May 2023
Learning Harmonic Molecular Representations on Riemannian Manifold
Learning Harmonic Molecular Representations on Riemannian Manifold
Yiqun Wang
Yuning Shen
Shih‐Ya Chen
Lihao Wang
Fei Ye
Hao Zhou
95
12
0
27 Mar 2023
Towards a Foundation Model for Neural Network Wavefunctions
Towards a Foundation Model for Neural Network Wavefunctions
Michael Scherbela
Leon Gerard
Philipp Grohs
107
10
0
17 Mar 2023
Geometric Clifford Algebra Networks
Geometric Clifford Algebra Networks
David Ruhe
Jayesh K. Gupta
Steven De Keninck
Max Welling
Johannes Brandstetter
AI4CE
139
38
0
13 Feb 2023
SchNetPack 2.0: A neural network toolbox for atomistic machine learning
SchNetPack 2.0: A neural network toolbox for atomistic machine learning
Kristof T. Schütt
Stefaan S. P. Hessmann
Niklas W. A. Gebauer
Jonas Lederer
M. Gastegger
78
65
0
11 Dec 2022
Knowledge-augmented Deep Learning and Its Applications: A Survey
Knowledge-augmented Deep Learning and Its Applications: A Survey
Zijun Cui
Tian Gao
Kartik Talamadupula
Qiang Ji
112
20
0
30 Nov 2022
Transferable E(3) equivariant parameterization for Hamiltonian of
  molecules and solids
Transferable E(3) equivariant parameterization for Hamiltonian of molecules and solids
Yang Zhong
Hongyu Yu
Mao Su
X. Gong
H. Xiang
92
42
0
28 Oct 2022
Structure-based drug design with geometric deep learning
Structure-based drug design with geometric deep learning
Clemens Isert
Kenneth Atz
G. Schneider
95
111
0
19 Oct 2022
Algorithmic Differentiation for Automated Modeling of Machine Learned
  Force Fields
Algorithmic Differentiation for Automated Modeling of Machine Learned Force Fields
Niklas Schmitz
Klaus-Robert Muller
Stefan Chmiela
AI4CE
77
11
0
25 Aug 2022
Machine Learning 1- and 2-electron reduced density matrices of polymeric
  molecules
Machine Learning 1- and 2-electron reduced density matrices of polymeric molecules
D. Pekker
Chungwen Liang
Sankha Pattanayak
S. Mukhopadhyay
22
0
0
09 Aug 2022
Graph neural networks for materials science and chemistry
Graph neural networks for materials science and chemistry
Patrick Reiser
Marlen Neubert
André Eberhard
Luca Torresi
Chen Zhou
...
Houssam Metni
Clint van Hoesel
Henrik Schopmans
T. Sommer
Pascal Friederich
GNNAI4CE
125
422
0
05 Aug 2022
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic
  Graphs
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs
Yi-Lun Liao
Tess E. Smidt
194
246
0
23 Jun 2022
So3krates: Equivariant attention for interactions on arbitrary
  length-scales in molecular systems
So3krates: Equivariant attention for interactions on arbitrary length-scales in molecular systems
J. Frank
Oliver T. Unke
Klaus-Robert Muller
89
44
0
28 May 2022
Accurate Machine Learned Quantum-Mechanical Force Fields for
  Biomolecular Simulations
Accurate Machine Learned Quantum-Mechanical Force Fields for Biomolecular Simulations
Oliver T. Unke
M. Stohr
Stefan Ganscha
Thomas Unterthiner
Hartmut Maennel
...
Daniel Ahlin
M. Gastegger
L. M. Sandonas
A. Tkatchenko
Klaus-Robert Muller
AI4CE
70
18
0
17 May 2022
Generative Coarse-Graining of Molecular Conformations
Generative Coarse-Graining of Molecular Conformations
Wujie Wang
Minkai Xu
Chen Cai
Benjamin Kurt Miller
Tess E. Smidt
Yusu Wang
Jian Tang
Rafael Gómez-Bombarelli
66
36
0
28 Jan 2022
Geometric Deep Learning on Molecular Representations
Geometric Deep Learning on Molecular Representations
Kenneth Atz
F. Grisoni
G. Schneider
AI4CE
142
309
0
26 Jul 2021
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Rui Wang
Rose Yu
AI4CEPINN
115
69
0
02 Jul 2021
1