ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.02347
  4. Cited By
SE(3)-equivariant prediction of molecular wavefunctions and electronic
  densities

SE(3)-equivariant prediction of molecular wavefunctions and electronic densities

4 June 2021
Oliver T. Unke
Mihail Bogojeski
M. Gastegger
Mario Geiger
Tess E. Smidt
Klaus-Robert Muller
ArXivPDFHTML

Papers citing "SE(3)-equivariant prediction of molecular wavefunctions and electronic densities"

22 / 22 papers shown
Title
Learning with Exact Invariances in Polynomial Time
Learning with Exact Invariances in Polynomial Time
Ashkan Soleymani
B. Tahmasebi
Stefanie Jegelka
Patrick Jaillet
78
0
0
27 Feb 2025
Enhancing the Scalability and Applicability of Kohn-Sham Hamiltonians for Molecular Systems
Enhancing the Scalability and Applicability of Kohn-Sham Hamiltonians for Molecular Systems
Yunyang Li
Zaishuo Xia
Lin Huang
Xinran Wei
Han Yang
...
Zun Wang
Chang-Shu Liu
Jia Zhang
Bin Shao
Mark B. Gerstein
77
0
0
26 Feb 2025
Learning local equivariant representations for quantum operators
Learning local equivariant representations for quantum operators
Zhanghao Zhouyin
Zixi Gan
MingKang Liu
S. K. Pandey
Linfeng Zhang
Qiangqiang Gu
90
3
0
28 Jan 2025
Equivariant Neural Tangent Kernels
Equivariant Neural Tangent Kernels
Philipp Misof
Pan Kessel
Jan E. Gerken
64
0
0
10 Jun 2024
Reducing the Cost of Quantum Chemical Data By Backpropagating Through
  Density Functional Theory
Reducing the Cost of Quantum Chemical Data By Backpropagating Through Density Functional Theory
Alexander Mathiasen
Hatem Helal
Paul Balanca
Adam Krzywaniak
Ali Parviz
Frederik Hvilshoj
Bla.zej Banaszewski
Carlo Luschi
Andrew William Fitzgibbon
43
3
0
06 Feb 2024
Manifold GCN: Diffusion-based Convolutional Neural Network for Manifold-valued Graphs
Manifold GCN: Diffusion-based Convolutional Neural Network for Manifold-valued Graphs
M. Hanik
Gabriele Steidl
C. V. Tycowicz
GNN
MedIm
36
3
0
25 Jan 2024
Variational Monte Carlo on a Budget -- Fine-tuning pre-trained Neural
  Wavefunctions
Variational Monte Carlo on a Budget -- Fine-tuning pre-trained Neural Wavefunctions
Michael Scherbela
Leon Gerard
Philipp Grohs
35
5
0
15 Jul 2023
QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules
QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules
Haiyang Yu
Meng Liu
Youzhi Luo
A. Strasser
X. Qian
Xiaoning Qian
Shuiwang Ji
18
20
0
15 Jun 2023
SchNetPack 2.0: A neural network toolbox for atomistic machine learning
SchNetPack 2.0: A neural network toolbox for atomistic machine learning
Kristof T. Schütt
Stefaan S. P. Hessmann
Niklas W. A. Gebauer
Jonas Lederer
M. Gastegger
25
59
0
11 Dec 2022
Knowledge-augmented Deep Learning and Its Applications: A Survey
Knowledge-augmented Deep Learning and Its Applications: A Survey
Zijun Cui
Tian Gao
Kartik Talamadupula
Qiang Ji
27
18
0
30 Nov 2022
Transferable E(3) equivariant parameterization for Hamiltonian of
  molecules and solids
Transferable E(3) equivariant parameterization for Hamiltonian of molecules and solids
Yang Zhong
Hongyu Yu
Mao Su
X. Gong
H. Xiang
36
36
0
28 Oct 2022
Structure-based drug design with geometric deep learning
Structure-based drug design with geometric deep learning
Clemens Isert
Kenneth Atz
G. Schneider
53
104
0
19 Oct 2022
Algorithmic Differentiation for Automated Modeling of Machine Learned
  Force Fields
Algorithmic Differentiation for Automated Modeling of Machine Learned Force Fields
Niklas Schmitz
Klaus-Robert Muller
Stefan Chmiela
AI4CE
21
11
0
25 Aug 2022
Machine Learning 1- and 2-electron reduced density matrices of polymeric
  molecules
Machine Learning 1- and 2-electron reduced density matrices of polymeric molecules
D. Pekker
Chungwen Liang
Sankha Pattanayak
S. Mukhopadhyay
12
0
0
09 Aug 2022
Graph neural networks for materials science and chemistry
Graph neural networks for materials science and chemistry
Patrick Reiser
Marlen Neubert
André Eberhard
Luca Torresi
Chen Zhou
...
Houssam Metni
Clint van Hoesel
Henrik Schopmans
T. Sommer
Pascal Friederich
GNN
AI4CE
50
373
0
05 Aug 2022
Accurate Machine Learned Quantum-Mechanical Force Fields for
  Biomolecular Simulations
Accurate Machine Learned Quantum-Mechanical Force Fields for Biomolecular Simulations
Oliver T. Unke
M. Stohr
Stefan Ganscha
Thomas Unterthiner
Hartmut Maennel
...
Daniel Ahlin
M. Gastegger
L. M. Sandonas
A. Tkatchenko
Klaus-Robert Muller
AI4CE
40
18
0
17 May 2022
Geometric Deep Learning on Molecular Representations
Geometric Deep Learning on Molecular Representations
Kenneth Atz
F. Grisoni
G. Schneider
AI4CE
34
287
0
26 Jul 2021
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Rui Wang
Rose Yu
AI4CE
PINN
39
65
0
02 Jul 2021
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and
  Nonlocal Effects
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
Oliver T. Unke
Stefan Chmiela
M. Gastegger
Kristof T. Schütt
H. E. Sauceda
K. Müller
177
247
0
01 May 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
233
1,240
0
08 Jan 2021
Deep neural network solution of the electronic Schrödinger equation
Deep neural network solution of the electronic Schrödinger equation
J. Hermann
Zeno Schätzle
Frank Noé
149
448
0
16 Sep 2019
A General Theory of Equivariant CNNs on Homogeneous Spaces
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S. Cohen
Mario Geiger
Maurice Weiler
MLT
AI4CE
165
308
0
05 Nov 2018
1