Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.02310
Cited By
FedCCEA : A Practical Approach of Client Contribution Evaluation for Federated Learning
4 June 2021
S. K. Shyn
Donghee Kim
Kwangsu Kim
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"FedCCEA : A Practical Approach of Client Contribution Evaluation for Federated Learning"
9 / 9 papers shown
Title
Collaborative Fairness in Federated Learning
Lingjuan Lyu
Xinyi Xu
Qian Wang
FedML
68
192
0
27 Aug 2020
Learning to Detect Malicious Clients for Robust Federated Learning
Suyi Li
Yong Cheng
Wei Wang
Yang Liu
Tianjian Chen
AAML
FedML
109
225
0
01 Feb 2020
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
256
6,261
0
10 Dec 2019
Data Valuation using Reinforcement Learning
Jinsung Yoon
Sercan O. Arik
Tomas Pfister
TDI
83
180
0
25 Sep 2019
Measure Contribution of Participants in Federated Learning
Guan Wang
Charlie Xiaoqian Dang
Ziye Zhou
FedML
93
200
0
17 Sep 2019
An Empirical Study of Example Forgetting during Deep Neural Network Learning
Mariya Toneva
Alessandro Sordoni
Rémi Tachet des Combes
Adam Trischler
Yoshua Bengio
Geoffrey J. Gordon
115
734
0
12 Dec 2018
No Peek: A Survey of private distributed deep learning
Praneeth Vepakomma
Tristan Swedish
Ramesh Raskar
O. Gupta
Abhimanyu Dubey
SyDa
FedML
57
100
0
08 Dec 2018
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
213
2,894
0
14 Mar 2017
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
306
4,646
0
18 Oct 2016
1