ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.02078
  4. Cited By
Improving Neural Network Robustness via Persistency of Excitation
v1v2v3v4v5 (latest)

Improving Neural Network Robustness via Persistency of Excitation

3 June 2021
Kaustubh Sridhar
O. Sokolsky
Insup Lee
James Weimer
    AAML
ArXiv (abs)PDFHTML

Papers citing "Improving Neural Network Robustness via Persistency of Excitation"

19 / 19 papers shown
Title
Reliable evaluation of adversarial robustness with an ensemble of
  diverse parameter-free attacks
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
Francesco Croce
Matthias Hein
AAML
221
1,846
0
03 Mar 2020
Persistency of Excitation for Robustness of Neural Networks
Persistency of Excitation for Robustness of Neural Networks
Kamil Nar
S. Shankar Sastry
AAML
41
10
0
04 Nov 2019
Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural
  Networks
Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks
Mahyar Fazlyab
Alexander Robey
Hamed Hassani
M. Morari
George J. Pappas
96
460
0
12 Jun 2019
Unlabeled Data Improves Adversarial Robustness
Unlabeled Data Improves Adversarial Robustness
Y. Carmon
Aditi Raghunathan
Ludwig Schmidt
Percy Liang
John C. Duchi
127
752
0
31 May 2019
Certified Adversarial Robustness via Randomized Smoothing
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
152
2,044
0
08 Feb 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
140
2,551
0
24 Jan 2019
Certified Robustness to Adversarial Examples with Differential Privacy
Certified Robustness to Adversarial Examples with Differential Privacy
Mathias Lécuyer
Vaggelis Atlidakis
Roxana Geambasu
Daniel J. Hsu
Suman Jana
SILMAAML
96
934
0
09 Feb 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing
  Defenses to Adversarial Examples
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
228
3,186
0
01 Feb 2018
Evaluating the Robustness of Neural Networks: An Extreme Value Theory
  Approach
Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approach
Tsui-Wei Weng
Huan Zhang
Pin-Yu Chen
Jinfeng Yi
D. Su
Yupeng Gao
Cho-Jui Hsieh
Luca Daniel
AAML
83
467
0
31 Jan 2018
Visualizing the Loss Landscape of Neural Nets
Visualizing the Loss Landscape of Neural Nets
Hao Li
Zheng Xu
Gavin Taylor
Christoph Studer
Tom Goldstein
252
1,893
0
28 Dec 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILMOOD
310
12,069
0
19 Jun 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection
  Methods
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
126
1,864
0
20 May 2017
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
427
2,941
0
15 Sep 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN3DV
775
36,813
0
25 Aug 2016
Optimization Methods for Large-Scale Machine Learning
Optimization Methods for Large-Scale Machine Learning
Léon Bottou
Frank E. Curtis
J. Nocedal
246
3,216
0
15 Jun 2016
Wide Residual Networks
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
349
7,985
0
23 May 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,020
0
10 Dec 2015
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAMLGAN
277
19,066
0
20 Dec 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
277
14,927
1
21 Dec 2013
1