ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.01901
  4. Cited By
Iterative Empirical Game Solving via Single Policy Best Response

Iterative Empirical Game Solving via Single Policy Best Response

3 June 2021
Max O. Smith
Thomas W. Anthony
Michael P. Wellman
ArXivPDFHTML

Papers citing "Iterative Empirical Game Solving via Single Policy Best Response"

9 / 9 papers shown
Title
Learning to Play against Any Mixture of Opponents
Learning to Play against Any Mixture of Opponents
Max O. Smith
Thomas W. Anthony
Yongzhao Wang
Michael P. Wellman
OffRL
47
9
0
29 Sep 2020
Pipeline PSRO: A Scalable Approach for Finding Approximate Nash
  Equilibria in Large Games
Pipeline PSRO: A Scalable Approach for Finding Approximate Nash Equilibria in Large Games
Stephen Marcus McAleer
John Lanier
Roy Fox
Pierre Baldi
24
78
0
15 Jun 2020
A Generalized Training Approach for Multiagent Learning
A Generalized Training Approach for Multiagent Learning
Paul Muller
Shayegan Omidshafiei
Mark Rowland
K. Tuyls
Julien Perolat
...
Zhe Wang
Guy Lever
N. Heess
T. Graepel
Rémi Munos
40
89
0
27 Sep 2019
$α$-Rank: Multi-Agent Evaluation by Evolution
ααα-Rank: Multi-Agent Evaluation by Evolution
Shayegan Omidshafiei
Christos H. Papadimitriou
Georgios Piliouras
K. Tuyls
Mark Rowland
Jean-Baptiste Lespiau
Wojciech M. Czarnecki
Marc Lanctot
Julien Perolat
Rémi Munos
60
120
0
04 Mar 2019
Open-ended Learning in Symmetric Zero-sum Games
Open-ended Learning in Symmetric Zero-sum Games
David Balduzzi
M. Garnelo
Yoram Bachrach
Wojciech M. Czarnecki
Julien Perolat
Max Jaderberg
T. Graepel
42
169
0
23 Jan 2019
A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning
A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning
Marc Lanctot
V. Zambaldi
A. Gruslys
Angeliki Lazaridou
K. Tuyls
Julien Perolat
David Silver
T. Graepel
84
628
0
02 Nov 2017
A multi-agent reinforcement learning model of common-pool resource
  appropriation
A multi-agent reinforcement learning model of common-pool resource appropriation
Julien Perolat
Joel Z Leibo
V. Zambaldi
Charlie Beattie
K. Tuyls
T. Graepel
45
186
0
20 Jul 2017
Deep Reinforcement Learning with Double Q-learning
Deep Reinforcement Learning with Double Q-learning
H. V. Hasselt
A. Guez
David Silver
OffRL
146
7,590
0
22 Sep 2015
Bayes' Bluff: Opponent Modelling in Poker
Bayes' Bluff: Opponent Modelling in Poker
F. Southey
Michael Bowling
Bryce Larson
Carmelo Piccione
Neil Burch
Darse Billings
D. C. Rayner
118
260
0
04 Jul 2012
1